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In 1931 Harold Hotelling wrote that the world might one day
have to survive without those commodities which are produced
with the aid of exhaustible resources. Since the late 1960’s Cumm-
ings (1969), Anderson (1972), Vousden (197%), Smith (1974),
-Solow (1975}, Lusky (1975) and Hu (1978) have suggested assorted
recycling, pricing, taxation and Golden Age rules to alleviate the
seemingly inevitafile depletion of many types of resources. A
related, and perhaps as serious, problem is that of replenishable
resources, e.g., fish and timber, which has been addressed by
Quirk and Smith (1969), Plourde (1970), Burt and Cummings
(1970), Sampson (1976) and Nener (1976), among others.!

In Section I we specify a model which uniquely features logistic
growth patterns for both the resource and human populations.?
The model is then examined for its equilibrium and stability pro-
perties. We also present the derivation and interpretation of an op-

* The authers are professor and assistant professor of economics at the University of
Missouri-Columbia.

1 See also the Review of Economic Studies Symposium (1974).

2 The model is similar to the preditor-prey models in the biological sciences. For exam-
ple, and for early discussions of the logistic growth rule, see Verhulst {1838), Pearl, Ray-
mond and Reed (1926), Lotka (1925) and Volterra (1931). Plourde (1971) takes a similar
approach to that utilized in this paper but assumes a constant human population.
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timal control rule. Following Vousden (1973%), mathematical
simplicity is enhanced by omitting capital from the production
function, leaving the resource and labor as the only inputs; and a
constant state of technology is assumed.

1. The Model

Consider a preditor-prey model with a replenishable resource R
and people N where the rates of change in their two populations
depends either partly or completely upon their sizes. For example,
in any time interval the quantity of the resource will change due to
the birth and death of individuals in the population and the
destruction of the resource due to encounter with humans, who
may destroy the resource either directly via consumption and/ox
production activities or indirectly via pollution, etc., where we
assume that the rate of unnatural death of the resource depends
upon the frequency of encounters between the two populations
and is hence proportional to RN. Although the possibility is not
treated in this paper, the rate of increase in the human population
could be specified to be proportional, a la Malthus, to its frequen-
¢y of encounters with the resource population.

The Pearl-Verhulst equations for the growth rates of the two
populations are accordingly:
#
R = aR-{ R’ - RN (1)

N=IN- LN : 2)

The equilibrium values of the two populations can be found by set-
ting (I) and (2) equal to zero, i.e., N can take the values 0 or a.?
We reject the first possibility as uninteresting’ so that N = a in
equilibrium. In this case the resource population can also assume
two values, namely

R=0,b(1-25 (3)

3 It is possible to assure that all equilibria are positive by adding arbitrarily small cons-
rant terrns to (1) and (2).
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Checking next for stability, total differentiation of (1) and (2)
yields

dR a--%g-R—ﬁN—BR- dR

anj 0 y —%YN AN

According to the Routh-Hurwitz conditions, a necessary and suffi-
cient condition for local asymptotic stability is that both terms on
the main diagonal be negative. In addition, Olech’s (1963)
theorem asserts that equilibrium will be globally stable if their pro-
duct is not equal to zero everywhere. Substituting into (4) for the
equilibrium values of R and N with the resource totally depleted
provides the Jacobian matrix -

a - ap 0
] - | (5)
0 _ ~Y
which may or may not be asymtotically stable. On the other hand,

the potentially positive equilibrium solution for the resource
population results in

“@-ap)  be(- 2

Noting the sign change from (5), we conclude that at least one of
the equilibria is stable. If the upper righthand term in (6) is
negative, the trajectory moves in a counter-clockwise spiral when
the upper lefthand term is negative. If the term is positive, the tra-
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jectory is a clockwise spiral. In either case, the solution is seen to bhe
periodic.

H. Optimal Control

It will be arithmetically helpful to eliminate one of the state
variables. Accordingly, we select N and note that the righthand
stde of {2) equals zero when N = a, which is where growth ceases
on the logistics curve. When all the terms of (2) involving N are
collected and decomposed into partial fractions, we have

() dN-vdt )
oY

N
a-N

In{—=) = Tt +c 8)

The solution is

_ a
N——~~~~—1 g 9)

‘where lim N =a. Substituting (9) into (1) results in

t - oo

R R R (10)

We assume that the economic planmer wishes to maximize the
discounted value of a utility function whose sole argument is con-
sumption.* Moreover, the consumer good or state variable is the
end product of a production function incorporating labor and the
amount of the resource diverted to human use, t.e.,

4 In the case of some resources, e.g., wilderness, it might be desirable to include the
resource stock in a Sierra Club utility function.



LOGISTIC GROWTH 11

C = F(N,R)

F (N, fNR)

F(N,fR —* 11
(N, 8 1Jre_q,t) (11)

where F is assumed to be well behaved with the usual signs and ap-
propriate limits on the derivatives.? It follows that the present value
utility function is

U = U[F(N, gR Tae-"?t_)] . (12)

which is also assumed to be strictly concave. Hence the planner’s
problem is to select a rule for the policy instrument 3 which max-
imizes the objective functional

a

Max J= % &Pty [F(N, gR )] dt (13)
0 1+ Mt
subject to
p— . Ba- Y
R=fe- )R- R (14)

R(0) =R, (15)
B is piecewise continuous

where § is an appropriate (however determined) discount rate:
where o is the termination point of the control; and where R{) =
Ry is the initial condition.® The present-value Hamiltonian is

5R = BNR is the amount of resource diverted to human use. This is the third term on
the vight hand side of equation {1). :

6 The control on B may be direct, €-£., quotas or restrictions on harvesting techniques,
or indirect via taxation or pricing policics.
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_ a B ap o
H U[F(N, .BR————1+e_7t )] + A [(a —_—1+e'7t)R bR ]

(16)

where 8 is a constate or auxiliary variable. Differentiating H with
respect to the control and simplifying provides

A=U_F (17)

T

“which states that the shadow price or marginal cost of using up the.
resource in the productive process should be equal to the marginal
utility derived from its use in production.” The critical control s
interior to the set of admissable §’s since the utility and production
functions are both strictly concave by assumption.

Finally, we need to eliminate the nonobservable auxiliary
variable % with the aid of the canonical equation

: oH
A “ﬁ“l‘

It

Ab

»UCFrBN+7\(8—a+{3N+-—21—;“—R) (18)
Substituting from the control rule, we have

7 It might be desirable to include technical change in the medel. For example, suppose
that resource-saving technology oceurs at the exogenous rate § so that the production func-
tion becomes

affR

C=F(N,
c_et (1 +e7t)

)

The control Tule is now

0t

=U_F
Ae cr
which states that utilization of the resource in production of the consumption good must in-
crease at a more rapid rate than would otherwise be the case. A more realistic approach
might be to introduce Kennedy-induced technical change as the costs of resource harvesting

increase over time.
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A 2
B 8—a+—b*"R (19)

Totally differentiating the control rule yields

A=FU G+UF R (20)
r cc c rr
and
- U . _
A _ e A s
T, C+ FrR (21)

Setting the righthand sides of (19} and (21) equal, substituting for
R, and rearranging, provides

U F
N ; 2a T off
C==[6-a+=<2R- Rg-———-
Ucc b Fr ( 1+e 7t
o
?R)] (22)
Noting that
Fl'f
o(R) = - 7 R {23)
' r
and
U _
o (C) =-g=cC (24)

are the elasticities of the marginal productivity of the resource and
the marginal utility of consumption, both of which are unam-
‘biguously positive, and with the optimal control we have the pair
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of differential equations

> g _aff \np_ape

R= (a- 14_6”%:)R 5 R (25)

“o G a2 7 -

C= 2 (©) [6-a+ bR+a(R)(a =T bR)]
(26)

From the standpoint of stability and the steady-state properties
of the model, it is necessary to assume that the human population
has reached the top of its logistics curve and is hence constant.
Moreover, arithmetic simplicity will be greatly enhanced by assum-
ing that o(C) = ofR) = 1 so0 that
(26) becomes '

C=-C(-af+p R) (27)

Noting that the control instrument depends upon the product of
U, and F,, the dynamic structure can be written

R=oR-af(U F )R+R (28)
C=-C[5-aB (U F)+R] | (29)

which, after differentiating, yields

dR a—aB’UCFHR—aB—Q-%R, dR
-a'F U_R
' (30)
dac aCg'U, F_-C, dc
o

~(af - 8)+ a.,(i"Fr UCC :j——b—R
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where §°(U_F ) <0,

The phase diagram for (30} is depicted in Figure 1. The phase
line for R demonstrates that a large stock of the resource can be
maintained only at the cost of maintaining a low level of consump-
tion whereas the phase line for consumption illustrates that
equilbrium consumption will be low if the resource is in small sup-
ply and that a large stock of the resource can be maintained only at
the expense of low consumption. The maximum sustainable level
of consumption is at C', which is greater than that obtained from
the optimal at C¥*, The arrows indicate the directions of change for
the two variables in each of the six subregions. The solution at (R*,
C*) s easily seen to be a saddle-point with the optimal trajectory
depicted by the arrowed line. If the rule is set so that the phase
lines intersect at (R’, C'), the solution is not a saddle-point and is
hence sub-optimal.®

The long-run equilibrium stock of the resource is obtained by
setting R equal to zero in (28) in order to obtain

R¥ =—(a - ap) (31)

If the steady-state stock of the resource is to remain positive, it is
required that o >> aB. Otherwise, the resource, replenishable or
not, will be depleted or maintained at a zero supply. Moreover, set-
ting C = O and sub-stituting R* into (29) yields the additional re-
quirement that ¢ + o > 2af3 if R* is to be positive in a steady state.
The long-run equilibrium level of consumption is then easily found
from the production function, given N (=a) and R*., The
equilibrium can be best described as a modified Golden Rule in
the sense that the resource-labor ratio, the output-resource ratio
and hence the output-labor ratio all remain constant,

8 As shown by Plourde (1976), R, C’ will be optimal if the discount rate is zero. Also,
Stiglitz (1976) has advanced the intriging notion that monopolies extract resources at less-
than-optimal rates. However, this position has been challenged by Tullock {1979) and
Lewis, Matthews, and Burness (1978), who utilize counter-examples to show that
monopolists may extract resources wo rapidly under certain cost and demand conditions.
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II1. Conclusions

This paper has applied the maximum principle to a model in
which both human and resource populations are assumed to grow
according to the logistic rule, although it is a simple matter to alter
the model so that the case of exhaustible resources can be handled.
An optimal control rule was derived and its properties were ex-
arnined, as well as those of the steady-state solution. Several possi-
ble extentions can be suggested. First, the real world is not deter-
" ministic’ so that it would be desirable to analyze the stochastic
analogue of the model and perhaps utilize adaptive or stochastic
programming to find an optimal control. A second interesting
variant would be the situation in which two populations compete
for a third resource, e.g., people and animal or fish life vying for
space or land resources.
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