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framework that incorporates both market-based technical indicators and macroeconomic 

variables. The model aims to learn an optimal investment policy that maximizes 

cumulative portfolio returns while adapting to changing market regimes and economic 

conditions. We construct a multi-asset portfolio including equities, government bonds, 

corporate bonds, and cash equivalents, and train the reinforcement learning agent using 

Proximal Policy Optimization algorithms within a Markov Decision Process framework. 

Extensive ablation studies reveal that the inclusion of select macroeconomic variables 

enhances both portfolio returns and downside risk control. Regime-specific analyses 

confirm that macro-informed models outperform baseline strategies in market downturns 

while maintaining competitive performance during bull and bear markets. This study 

bridges the gap between the literature in the field of computer science and financial 

economics, offering an empirically validated, end-to-end decision-making tool for 

regime-aware, multi-asset portfolio management. 
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1.  INTRODUCTION 

 
The main objective of this study is to develop a reinforcement learning based asset 

allocation model that optimizes multi-asset portfolios by incorporating variations in 
asset prices and shifts in the macroeconomic environment. For sophisticated investors, 
portfolio decisions can be guided by expectations of future returns, influenced by asset 
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prices and macroeconomic conditions. Previous studies have addressed the portfolio 
optimization problem, ranging from mean-variance optimization to dynamic asset 
allocation strategies that incorporate regime switching and changes in the market 
condition and business cycle. However, these methods typically rely on static inputs and 
raise concerns regarding potential estimation errors (Chopra and Ziemba, 1993). Recent 
developments in reinforcement learning have elucidated this field by enabling dynamic 
data-driven learning frameworks that can effectively mitigate these limitations. 

Despite the advantages of reinforcement learning based asset allocation models, 
research in this area remains in its nascent stages. In particular, few studies have focused 
on integrating insights from widely studied topics in the finance and economic literature, 
such as business cycles and regime changes, into reinforcement learning based 
frameworks (Kelly and Xiu, 2023). Existing approaches that incorporate 
regime-switching dynamics often rely solely on the price information of individual 
assets to detect regime shifts, thereby underutilizing broader macroeconomic variables. 
This is a significant gap, considering that macroeconomic regime analysis using 
variables such as inflation, employment, and industrial activity is not only prevalent in 
academic research, but is also widely adopted by investors or portfolio managers in the 
financial industry to guide portfolio allocation decisions.  

This study proposes an autonomous asset allocation model that leverages key 
variables emphasized in both financial literature and practice, combined with 
reinforcement learning. The model is designed to learn an optimal investment policy that 
maximizes cumulative returns, enabling it to make asset allocation decisions 
independently. Specifically, the model is trained using three categories of information: 
(1) asset prices and trading volume, (2) technical indicators derived from prices and 
volume data, and (3) macroeconomic variables. Through continuous interaction with the 
changes in the market environment, the model dynamically adjusts its investment policy 
in response to the market and macroeconomic conditions. 

This study employs exchange-traded funds (ETFs) listed in the U.S. market that 
represent four primary asset classes: equities, government bonds, corporate bonds, and 
cash equivalents. Using ETFs enhances the practical feasibility of implementing the 
models’ proposed strategy. The reinforcement learning agent is trained using asset price 
data, technical indicators, and macroeconomic variables as state inputs. The objective is 
to learn an optimal investment policy that maximizes cumulative portfolio returns. 
Based on this policy, the agent autonomously reallocates portfolio weights on a weekly 
basis. We propose an end-to-end model in which the agent learns continuously from 
both changes in market conditions and portfolio performance. Hence, the agent can 
make dynamic and informed asset allocation decisions. 

This paper examines whether reinforcement learning based portfolio strategies 
deliver superior investment performance. Following are the two main contributions. 
First, we augment the commonly used asset price data with macroeconomic variables 
that reflect the changes in market condition and economic cycle in constructing the 
reinforcement learning models. While reinforcement learning has been applied to 
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various field in finance, its application to portfolio optimization has been limited and 
paid little attention to macroeconomic considerations. We address this gap by aligning 
reinforcement learning frameworks more closely with financial economic theory. By 
incorporating macroeconomic data, we design models that learn efficiently from a 
carefully selected set of economically informative state variables, thereby enhancing the 
performance of reinforcement learning based portfolio optimization. Second, we expand 
the investment universe to include equities, government bonds, corporate bonds, and 
cash equivalents, thereby aligning the optimization problem with the strategic asset 
allocation decisions faced by sophisticated investors. The sophisticated investors usually 
begin with an asset allocation decision across broad asset classes before selecting 
individual stocks. Whereas most prior studies focus on stock selection, our focus on 
multi-asset allocation offers insights that are both theoretically grounded and practically 
relevant for institutional and individual investors alike. We propose an adaptive asset 
allocation framework that is applicable to multi-asset portfolios and robust across 
varying macroeconomic regimes. 

The remainder of this study is organized as follows. Section 2 reviews the related 
literature. Section 3 introduces the reinforcement learning model used in this study, 
including the architecture, investment universe, and training data sets. Section 4 outlines 
the analysis methodology. Section 5 presents the results, and Section 6 concludes the 
paper with a summary of the contributions and suggestions for future research. 

 
 

2.  LITERATURE REVIEW 

 

2.1.  Portfolio Optimization 
 
The theory of portfolio optimization explores how investors can construct and 

manage portfolios comprising multiple assets to achieve an optimal balance between 
return and risk. The foundational work in this field was established by Markowitz (1952), 
who introduced the mean-variance optimization framework. Through appropriate 
weighting of diverse assets, they aim to construct efficient portfolios that deliver the 
highest possible return for a given level of risk.  

Building on this foundation, Merton (1969) extended portfolio theory from the static 
framework to an intertemporal formulation. Additionally, academic attention has 
increasingly turned toward developing asset allocation strategies that incorporate 
macroeconomic conditions and their transitions over time. Hamilton (1996) 
demonstrated that the volatility of equity returns varies depending on the phase of the 
business cycle, with recessions exerting particularly strong effects. He proposed a 
regime-switching model that uses economic variables, such as industrial production, to 
predict the changes in macroeconomic conditions. Recently, Vliet et al. (2011) uses 
economic variables to forecast business cycles as defined by the National Bureau of 
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Economic Research. Their approach dynamically adjusts asset allocations based on the 
predicted economic cycle, thereby improving responsiveness to macroeconomic 
fluctuations. 

Portfolio optimization research has been based on historical and expected returns as 
well as the covariances between assets. However, this approach presents several notable 
limitations. First, the theory uses estimated or expected covariances. In reality, asset 
volatilities and correlations are highly dynamic and often change significantly under 
turbulent market conditions. During periods of heightened volatility, asset correlations 
tend to increase, thereby reducing the benefits of diversification and leading to 
instability in mean-variance optimized portfolios (López de Prado, 2016). Second, 
portfolio optimization is highly sensitive to estimation errors in variables. Expected 
returns and volatilities are typically derived from historical data, and any inaccuracies in 
these estimates can significantly distort optimization outcomes. Given the inherent 
uncertainty in forecasting future returns, the reliability of such estimates is often 
questionable. Third, mean-variance optimization is based on a single-period framework, 
which limits its applicability in dynamic, multi-period investment environments. Finally, 
conventional statistical approaches have difficulty capturing the complex non-linear 
relationships often observed in financial data (Sugadev et al., 2023). 

To address these issues, researchers have explored regime-switching frameworks 
that dynamically incorporate changing market conditions into asset allocation strategies 
(Collin-Dufresne et al., 2022). Methods for identifying regime shifts -changes that 
significantly affect asset returns, volatilities, and covariances- typically rely either on 
macroeconomic variables or inferences drawn from asset price dynamics. Incorporating 
regime-switching into asset allocation represents an important advancement beyond 
static optimization models, offering improved adaptability to evolving market 
environments. However, conventional methods still struggle to capture the complex 
non-linear relationships and dynamics prevalent in financial data. Typically, these 
models first classify the market into discrete regimes and then proceed with optimization 
procedures based on regime-specific assumptions about expected returns and 
covariances. 

Reinforcement learning models interact with the environment and learn optimal 
policies through a process of trial and error, guided by feedback in the form of rewards. 
Statistical methods can be affected by regime misclassification and inaccurate estimation 
of regime-specific moments. However, reinforcement learning does not rely on such 
predictive estimates, which helps mitigate the impact of model misspecification and 
estimation errors. In addition, reinforcement learning models may demonstrate superior 
performance in capturing the non-linear relationships between explanatory variables and 
asset prices. Rather than forecasting asset returns and volatilities for the purpose of 
optimization, reinforcement learning models aim to characterize dynamic market 
environments and derive asset allocation strategies based on the available information 
set. Despite its advantages, reinforcement learning has not yet been widely adopted in 
the finance literature. However, a growing body of research has begun to explore the 
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application of reinforcement learning to portfolio optimization, as detailed in the next 
subsection. 

 
2.2.  Portfolio Optimization Using Reinforcement Learning 
 
Recent advancements in reinforcement learning have led to significant performance 

improvements across a wide range of research domains, including finance. In the context 
of portfolio optimization, reinforcement learning algorithms are typically categorized 
based on whether or not they require an explicit model of the environment. This results 
in two primary classes: model-based and model-free approaches. Model-free methods 
can be further divided into value-based and policy-based approaches. 

Value-based agents learn only a value function while maintaining an implicit policy. 
Notable algorithms in this category include State-Action-Reward-State-Action (SARSA), 
Q-learning, and Deep Q-Networks. One advantage of this approach is that it typically 
makes more efficient use of available data. In contrast, policy-based agents learn a 
policy directly without estimating a value function. Examples include algorithms based 
on policy gradients. This approach offers the benefit of directly optimizing the desired 
objective, often resulting in more stable learning outcomes. Some agents combine both 
value and policy learning, and these are known as Actor-Critic models. They leverage 
the strengths of both value-based and policy-based methods (Tang, 2018). 

Notable studies using value-based approaches include the work of Yang et al. (2018), 
who applied both Q-learning and Recurrent Reinforcement Learning (RRL) to evaluate 
trading performance between risky and risk-free assets. The study tested multiple value 
functions, including internal profit, the Sharpe ratio, and variants of the Sharpe ratio. 
Among these, models utilizing the variants of the Sharpe ratio and RRL demonstrated 
more stable and superior performance outcomes. Pendharkar et al. (2018) addressed the 
retirement portfolio optimization problem using value-based reinforcement learning, 
specifically employing on-policy SARSA and off-policy Q-learning algorithms. The 
portfolio consisted of two asset classes: the S&P 500 Index and a broad bond market 
index. The objective was to maximize either total return or the Sharpe ratio. The authors 
defined market state variables by segmenting asset returns into four distinct regimes, 
enabling the model to learn customized representations of the market environment.  

Park et al. (2020) explored a portfolio trading strategy using deep Q-learning, 
extending previous research from single-asset settings to multi-asset portfolios. The 
constructed portfolio included cash, large-cap, mid-cap, and small-cap equity indices, 
allowing the model to learn style-based allocation among risky assets. The state 
variables consisted of five technical indicators, such as closing return, intraday highs and 
lows, to inform decision-making. Das et al. (2024) proposed a Q-learning-based 
portfolio optimization framework to address the goal-based wealth management problem. 
The study demonstrated that reinforcement learning provides a flexible solution in 
environments characterized by path-dependency and large state spaces -key challenges 
in goal-based wealth management applications. 



JONG HA JEON, ZOONKY LEE AND DOJOON PARK 128

Research on reinforcement learning based portfolio optimization has explored a wide 
array of algorithmic frameworks and parameter configurations. The types of assets used 
in these studies vary considerably, ranging from individual stocks to equity-bond indices 
and style-based indices. Most of the models rely heavily on asset price data and 
technical indicators as input features. However, studies that incorporate macroeconomic 
variables as state inputs remain relatively scarce. The limited incorporation of 
macroeconomic variables constrains the models’ ability to adapt to broader economic 
regime changes. 

 
2.3.  Regime-Switching and Reinforcement Learning 
 
Research on regime-switching in the context of reinforcement learning dates back to 

Moody and Wu (1997), which introduced RRL to directly optimizing trading strategies 
and portfolios. Building on this, Maringer and Ramtohul (2012) proposed a method to 
identify market regimes by analyzing stock price data using RRL techniques. Bauman et 
al. (2024) introduced a hybrid approach that integrates regime identification via Hidden 
Markov Models into reinforcement learning environments. Specifically, they classified 
market conditions into two regimes based on CPI-adjusted returns, and incorporated the 
regime-switching signals into the reinforcement learning framework to construct a 
portfolio optimization model. 

Although the integration of regime-switching into reinforcement learning-based 
portfolio optimization is still in its early stages, some studies have made initial at the 
portfolio theory. These approaches are notable for introducing regime information as an 
additional feature. However, they tend to rely primarily on asset price data, thereby 
capturing momentum-based signals rather than broader macroeconomic dynamics. Such 
methods implicitly assume that past asset returns are predictive of future returns. 
However, this assumption overlooks the broader context of financial market shifts, 
which cannot be fully understood through asset price movements alone. 

In the financial literature, regime analysis often extends beyond asset prices to 
include macroeconomic variables that capture changes in the broader business cycle. 
Similarly, in the asset management industry, regime-based asset allocation strategies that 
rely on macroeconomic indicators are widely implemented in practice. Despite this, 
reinforcement learning-based portfolio optimization research has rarely incorporated 
macroeconomic variables as part of the state representation within the learning 
environment (Fischer, 2018). To address this gap, this study develops a reinforcement 
learning based model that explicitly includes macroeconomic variables previously 
underexplored in the reinforcement learning literature as part of its input features. This 
enables the model to learn and respond to changes in the economic environment, 
adapting its asset allocation decisions accordingly. 

 
 

3.  REINFORCEMENT LEARNING MODEL 
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3.1.  Problem Description 
 
This study formulates an asset allocation task as a reinforcement learning problem, 

wherein the agent dynamically adjusts the weights of a multi-asset portfolio to maximize 
the cumulative portfolio return. Because reinforcement learning models learn through 
interactions with an environment based on the observed states and received rewards, the 
selection of input data is a critical design consideration. Financial markets are highly 
complex systems in which asset prices, macroeconomic conditions, and investor 
sentiment interact dynamically. To address this complexity, the reinforcement learning 
environment is carefully structured to allow the agent to learn from both evolving price 
patterns and macroeconomic regimes. 

The agent is trained on a comprehensive state space that includes (1) raw asset price 
data, (2) technical indicators used to measure momentum, trading volume dynamics, and 
price volatility, (3) macroeconomic indicators that signal shifts in the economic 
condition and business cycle, (4) covariances between asset returns, and (5) reward 
feedback based on portfolio performance. To ensure that the agent can effectively learn 
from this diverse set of features, dimension reduction techniques are employed to 
manage the complexity of the input space. 

The investment universe is composed of four major asset classes, and the initial 
portfolio is constructed using equal weighting. The reinforcement learning agent 
rebalances the portfolio on a weekly basis throughout the training and testing periods. 
We propose an end-to-end reinforcement learning framework in which the agent 
autonomously learns an optimal asset allocation policy by continuously interacting with 
portfolio data, asset-level signals, and market conditions. 

 
3.2.  Reinforcement Learning Model 
 
The asset allocation problem is formulated as a Markov decision process, which 

provides a framework for sequential decision-making in dynamic environments. In the 
context of portfolio optimization, the Markov decision process enables agents to make 
investment decisions that maximize expected rewards while accounting for the inherent 
uncertainty and temporal variability of financial markets. In the Markov decision 
process framework, the agent learns from past states and rewards to determine optimal 
actions at each time step. This process allows the agent to maximize investment 
performance while managing risk. By leveraging reinforcement learning algorithms, the 
agent can learn directly from data and dynamically adapt its asset allocation policy over 
time. 

The Markov decision process is defined by five core components: the state space S, 
action space A, state transition probabilities Pa, reward function Ra, and discount 
factor γ gamma. At each time step t, the agent observes a state   , selects an action   , 
receives a reward   , and transitions to a new state     . The objective of 
reinforcement learning is to learn a policy that maximizes the expected cumulative 
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reward over time by iteratively interacting with the environment. 
The agent begins with an initial portfolio balance at time t= 0 and takes actions at 

each subsequent time step. While time intervals can be configured on a daily, weekly, 
monthly, or annual basis depending on the research objective, this study adopts a weekly 
frequency to account for asset liquidity and transaction costs. In real-world trading, 
transactions typically incur costs that vary by asset type and counterparty. For simplicity, 
this study assumes a transaction cost of 0.1% of the trade value for both buy and sell 
operations. Market impact is ignored, and it is assumed that trades can be executed 
continuously without delay. The state represents the agent's perception of the market 
environment at each time step. In this model, the state vector includes information such 
as account balance, the number of shares held for each asset, portfolio performance 
metrics, technical indicators, macroeconomic variables, and the covariance matrix 
between asset returns. Given the weekly rebalancing structure of the portfolio, the time 
step for the reinforcement learning process is set to a weekly frequency. 

In this study, ten technical indicators are incorporated into the state space to capture 
information on volatility, trading volume, and momentum. These indicators help detect 
trends, momentum shifts, and buying or selling pressures -insights that cannot be easily 
derived from raw price data alone. Macroeconomic indicators included in the state space 
offer insights into broader economic conditions. Since asset prices and cross-asset 
correlations are sensitive to fluctuations in inflation and economic growth, the 
integration of macroeconomic variables enables the reinforcement learning agent to 
make more informed and context-aware allocation decisions, ultimately enhancing 
portfolio performance. 

The simulation assumes an initial balance of USD on million. At each time step, the 
portfolio’s net asset value (NAV) is computed based on the asset-specific returns 
observed within the corresponding state. The reward function in this study is defined as 
the portfolio return. The agent receives rewards based on realized portfolio performance 
and learns a policy aimed at maximizing cumulative returns over time. Both buy and sell 
transactions are assumed to incur a fee of 0.1% of the trade value. At each time step, this 
transaction cost is deducted from portfolio returns and incorporated into the reward 
calculation, ensuring that the agent learns under realistic cost constraints. 

 

3.3.  Deep Reinforcement Learning Agent and Investment Universe 
 
The training algorithms used Proximal Policy Optimization (PPO). The PPO is an 

on-policy method that addresses some of the stability issues associated with traditional 
policy gradient algorithms. By restricting the size of policy updates using a clipping 
mechanism, PPO enhances training stability and has been shown to perform robustly in 
complex environments, such as financial markets. The PPO incorporates a clipping 
mechanism within its objective function to constrain the magnitude of policy updates. 
This helps prevent drastic policy changes, thereby promoting more stable and controlled 
learning. 
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This study constructs a portfolio comprising equities, U.S. Treasury bonds, corporate 
bonds, and Treasury bills to reflect the distinct risk-return characteristics of core asset 
classes, as detailed in Table 1. These assets exhibit heterogeneous risk profiles and 
varying correlations across market regimes: equities represent high-risk assets, treasury 
bonds involve interest rate risk without credit risk, corporate bonds entail both credit and 
interest rate risk, and treasury bills serve as near-risk-free instruments. This framework 
facilitates the analysis of cross-asset diversification and hedging effects and may be 
extended in future research to include alternative assets, such as gold or emerging 
market debt.  

 
 

Table 1.  The List of Investable Assets 

Ticker Asset class Security Name Structure 

SPY Equity SPDR S&P 500 ETF 

TLT Treasury Bonds iShares 20+ Year Treasury Bond ETF 

LQD Corporate Bonds iShares iBoxx $ Investment Grade Corporate Bond ETF 

BIL Treasury Bill SPDR Bloomberg 1-3 Month T-Bill ETF 

Note: This table presents the list of investable assets used in this study to construct the portfolio. Each asset is 

represented by its ticker symbol and asset class. All instruments are exchange-traded funds (ETFs) and listed 

primarily on the NYSE or NASDAQ. All returns are computed from adjusted close prices with dividends 

reinvested. 

 
 

3.4.  Data Sets 
 
The model utilizes a comprehensive set of features, including five basic features for 

each ETF, ten technical indicators, and six macroeconomic indicators. Table 2 presents 
the key technical indicators employed to build the model. The five basic features of each 
asset are the closing price, highest price, lowest price, opening price, and trading volume. 
These metrics capture essential information on asset price movements and liquidity 
conditions. The model was trained using ten technical indicators, including Volatility 
Average True Range, Volatility Bollinger Band Width, and Momentum Relative 
Strength Index, among others. These indicators are designed to capture key aspects of 
market behavior such as price momentum, volatility, and overbought or oversold 
conditions -features that are not readily apparent from raw price data alone. 

Table 3 presents macroeconomic variables. Macroeconomic data comprise five key 
indicators that reflect the health and direction of the U.S. economy. All macroeconomic 
indicators are released on a monthly basis by their respective agencies. The following 
five variables are widely recognized in both academic research and industry practice as 
effective tools for distinguishing different phases of the economic cycle. 



JONG HA JEON, ZOONKY LEE AND DOJOON PARK 132

Table 2:  Technical Indicators 
Indicators Key measurements 

Volatility Average True Range Volatility of a price movement 

Volatility Bollinger Band Width Volatility of a Bollinger Band 

Volume On-balance Volume  Trading volume 

Volume Chaikin Money Flow  Trading volume 

Trend Moving Average Convergence Divergence Momentum / Trend 

Trend Average Directional Index  Momentum / Trend 

Trend Fast Simple Moving Average  Momentum / Trend 

Trend Fast Exponential Moving Average  Momentum / Trend 

Trend Commodity Channel Index  Momentum / Trend 

Momentum Relative Strength Index Momentum / Trend 

Note: The table outlines the key technical indicators employed to build the model. Indicators span volatility, 

trading volume, and momentum or trend.  

 
 

Table 3.  Macroeconomic Variables 

Macro variables Descriptions Reporting Agency 

Consumer Price Index (CPI) 
 

Month-over-month change in Consumer 
Price Index, a measure of inflation 

Bureau of Labor 
Statistics 

Non-farm Payrolls 
 

Employment growth in the non-agricultural 
sector  

Bureau of Labor 
Statistics 

Unemployment Rate  
 

Reflects overall economic health and 
recessionary pressures 

Bureau of Labor 
Statistics 

Leading Economic Index 
(LEI) 

Composite indicator used to forecast future 
economic activity 

The Conference Board 
 

ISM Manufacturing New 
Orders Index (ISM) 

Measures new orders in the manufacturing 
sector 

Institute for Supply 
Management  

Note: The table presents macroeconomic variables. These variables are released on a monthly basis by their 

respective agencies and mapped to the weekly reinforcement learning environment by carrying the latest 

released value forward until the next release. The data for each indicator were obtained from the Federal 

Reserve Bank of St. Louis FRED database. 

 
 

• US Consumer Price Index (CPI), MoM: CPI is a key macroeconomic indicator 
that measures the average change over time in the prices of a fixed basket of goods and 
services typically consumed by urban households 
• US Non-Farm Payrolls (NFP): This metric captures monthly employment growth 
in the non-agricultural sector and serves as a timely gauge of labor market strength. 
• US Unemployment Rate: Calculated by the U.S. Bureau of Labor Statistics (BLS) 
through the monthly Current Population Survey (CPS), it serves as a coincident indicator 
of economic activity, capturing contemporaneous shifts in labor demand.  



REINFORCEMENT LEARNING BASED DYNAMIC ASSET ALLOCATION  133

• US Leading Economic Index (LEI): Published by the Conference Board, the LEI 
aggregates several forward-looking variables to project the direction of future economic 
activity. 
• ISM Manufacturing New Orders Index (ISM): As a component of the broader ISM 
manufacturing index, this indicator reflects demand conditions in the manufacturing 
sector and is closely watched for early signs of economic expansion or contraction. 

Kim (2023) identifies economic growth and inflation indicators as key measures of 
the business cycle, noting that asset returns, volatility, and correlations tend to shift with 
changes in these macro trends. Based on this, CPI and growth-related indicators were 
included as core macro variables. Inflation is a key determinant that significantly 
influences asset returns. (Marshall, 1992). Regarding labor market indicators, Goldberg 
and Grisse (2013) confirm that payrolls announcements exert a significant influence 
across the U.S. yield curve. Hornstein (2016) highlights the unemployment rate as a 
robust indicator of recession risk and notes its significant impact on asset performance. 
Boyd et al. (2005) examines the reaction of equity markets to unemployment rate 
announcements. The authors demonstrate that the market’s response is conditional on 
the state of the business cycle: stock prices tend to rise in response to higher 
unemployment during economic expansions, but decline during contractions. 

Long et al. (2022) provide robust evidence that leading indicators possess significant 
predictive power for equity returns and can serve as effective tools for enhancing 
investment strategies. Specifically, the LEI in the United States is a composite measure 
that combines key economic and financial indicators -such as stock prices, building 
permits, and interest rate spreads- to anticipate future economic activity, particularly 
turning points in the business cycle. McGuckin (2004) demonstrated that the LEI 
significantly enhances the predictive power for the Composite Index of Coincident 
Indicators, a broad monthly measure of current economic conditions. These 
macroeconomic variables were incorporated into the model to allow the agent to learn 
and respond to changes in the macroeconomic regime during the investment 
decision-making process. 

The training dataset spans from May 7, 2012, to June 28, 2018, a period 
characterized by relatively stable post-crisis recovery in global financial markets 
following the aftermath of the global financial crisis of 2008–2009 and the European 
sovereign debt crisis. This training window provides the model with exposure to 
standard cyclical fluctuations under moderate monetary policy conditions. In contrast, 
the testing period extends from July 4, 2018, to December 19, 2022, and includes several 
distinct macroeconomic regimes, most notably the unprecedented volatility observed 
during the COVID-19 pandemic. This out-of-sample window captures a wide range of 
market dynamics, including sharp contractions in economic activity, aggressive 
monetary and fiscal interventions, inflationary pressures, and shifts in investor sentiment. 
By incorporating both relatively normal and highly turbulent conditions, the dataset 
ensures a robust evaluation of the model’s ability to generalize across diverse economic 
environments and stress scenarios. 



JONG HA JEON, ZOONKY LEE AND DOJOON PARK 134

4.  ANALYSIS METHODOLOGY 

 

4.1.  Ablation Studies 
 
Ablation study has emerged as a critical methodological tool in machine learning 

research, enabling researchers to systematically evaluate the marginal contribution of 
individual model components or input variables to overall model performance (Souto 
and Louzada, 2024). The core idea of an ablation study is to iteratively remove or 
modify specific features, data categories, or modules and observe the resulting impact on 
key evaluation metrics such as Sharpe ratio, cumulative returns, and prediction accuracy. 

 

 

Table 4.  Models and Corresponding Data Sets 

Models Descriptions / Trained data sets 

UW Uniform Weight 

T Basic and Technical indicators 

M Basic and Macroeconomic variables 

T+M Basic, Technical, and Macroeconomic variables 

T+1a Basic and Technical indicators, CPI 

T+1b Basic and Technical indicators, ISM 

T+1c Basic and Technical indicators, Labor 

T+1d Basic and Technical indicators, LEI 

T+2a Basic and Technical indicators, CPI, ISM 

T+2b Basic and Technical indicators, CPI, Labor 

T+2c Basic and Technical indicators, Labor, ISM 

T+2d Basic and Technical indicators, Labor, LEI 

T+2e Basic and Technical indicators, ISM, LEI 

T+3 Basic and Technical indicators, CPI, ISM, Labor 

Note: This table presents the configuration of the trained models and corresponding input feature sets. 

Variable definitions are provided in Table 3. Basic denotes the five features of closing price, highest price, 

lowest price, opening price, and trading volume. Labor comprises the U.S. non-farm payrolls and the U.S. 

unemployment rate. Model acronyms: UW (uniform 25% each), T (technical only), M (macro only), T+M 

(technical + macro), and T+1/2/3 variants (selected macro subsets). 

 
 

In this study, we employ an ablation framework to evaluate the impact of different 
groups of input variables on the performance of a reinforcement learning-based asset 
allocation model. Table 4 shows the configuration of the trained models and 
corresponding input feature sets. These input groups include technical indicators, 
macroeconomic indicators such as CPI, ISM, LEI, and labor market variables, as well as 
their various combinations. Specifically, we compare the performance of four models: a 
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uniform weight (UW) strategy with equal allocation, a technical-only (T) model using 
only technical indicators, a macro-only (M) model using only macroeconomic variables, 
and a combined (T+M) model incorporating both feature types. As shown in Table 4, we 
further analyzed different combinations of macroeconomic variables to evaluate the 
marginal contribution of each indicator and identify the key variables that drive superior 
performance. Through this process, we aim to identify which variable combinations 
yield statistically and economically superior allocation policies and provide guidance for 
future model designs and variable selection strategies in data-driven investment 
frameworks. 

Portfolio performance is evaluated using multiple metrics, including the cumulative 
return, Sharpe ratio, volatility of returns, maximum drawdown, Sortino ratio, and the 
volatility of negative excess returns, which are calculated based on returns that fall 
below risk-free rates. These indicators enable a comprehensive assessment of both the 
return and risk characteristics. 

 
4.2.  Performance Analysis Across Market Regimes  
 
To evaluate the model’s adaptability to market dynamics, the testing period was 

divided into six regimes -three bull markets and three corrections- based on the S&P 500 
trends. This classification captures both bull and bear markets over a 
four-and-a-half-year period. This segmentation captures the shifts in financial market 
asset correlations. To quantify the evolving inter-asset relationships across regimes, we 
calculate the beta of government and corporate bonds relative to equities during both 
bull and correction phases. This enables us to observe how these sensitivities shift 
depending on broader market conditions. As presented in Table 5, in regimes 1 through 
3, government bonds exhibited a negative beta to equities, consistent with conventional 
market behavior. In contrast, regimes 4 through 6 showed a breakdown in this inverse 
relationship, with both asset classes declining simultaneously. These observations 
highlight the importance of dynamically adjusting asset allocation policies to reflect 
changing inter-asset dependencies. 

 
 

Table 5.  Betas of Each Asset Against SPY 
Phase Duration (weeks) BIL LQD SPY TLT 

1 – 6 233 0.00 0.39 1.00 -0.03 

1 – 3 92 0.00 0.35 1.00 -0.28 

4 – 6 141 0.00 0.45 1.00 0.26 

Note: This table presents the regime-specific beta coefficients of BIL, LQD, and TLT relative to SPY. The 

betas are computed using weekly returns over each regime period. The data spans the period from July 2018 

to December 2022. 

 
 

This study evaluates the adaptability of each reinforcement learning model by 
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analyzing how asset allocations were adjusted across market regimes. The excess returns 
generated by each model are benchmarked against the uniform weight strategy to assess 
relative performance under varying market conditions. In addition, portfolio 
performance is evaluated using multiple metrics, including cumulative return, average 
return, Sharpe ratio, Sortino ratio, maximum drawdown, and the volatility of negative 
excess returns. These indicators enable a comprehensive assessment of both return and 
risk characteristics.  

 
 

5.  RESULTS 

 

5.1.  Performance Evaluation  
 
In this section, we evaluate the trained models. Table 6 reports the cumulative return, 

annualized return, volatility, and the volatility of negative excess returns relative to the 
risk-free rate over the test period. The UW model, which allocates 25% to each of the 
four asset classes, achieved a cumulative return of 13.89% and a volatility of 8.94%. 
These values serve as a baseline for evaluating the performance of alternative models. 
The T model, trained exclusively using technical indicators, achieved a cumulative 
return of 17.02%, outperforming the UW model by 3.13 percentage points. Both the 
overall volatility and the volatility of negative returns -defined as the standard deviation 
of returns falling below the risk-free rate- increased relative to UW. 

Next, we examine the performance of models that incorporate macroeconomic 
variables. The M model generated higher returns than the UW model, but 
underperformed relative to the T model. The T+M model, which combines technical and 
macroeconomic features, achieved the highest cumulative return, improving on UW by 
3.74 percentage points. Although the portfolio's volatility increased to 9.18%, the 
volatility of negative returns decreased slightly, from 7.21% to 7.18%. This suggests that 
the T+M model achieved superior returns and improved downside risk management. 
The performance and volatility outcomes can be further elucidated by comparing 
risk-adjusted return metrics. 

The risk-adjusted performances of the trained models are examined using the Sharpe 
ratio, the Sortino ratio and the maximum drawdown (MDD). Table 7 shows the results. 
Although the volatility of the T model increased slightly, its Sharpe ratio improved from 
0.19 to 0.24, reflecting enhanced risk-adjusted performance. However, the model's 
maximum drawdown marginally widened to -11.98%. This increase in both volatility 
and MDD is likely due to the reinforcement learning agent’s reliance on technical 
indicators, particularly momentum signals, suggesting that the model adopts a 
trend-following allocation strategy which performs well in sustained upward markets. 

On the other hand, the M model produced higher returns and a superior Sharpe ratio 
compared to the UW model but still lagged behind the T model. Its maximum drawdown 
reached -12.62%, indicating a deterioration in downside protection compared to -11.54% 
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for the UW model. The T+M model demonstrated notable improvements in both return 
and risk-adjusted performance. Its Sharpe ratio increased significantly to 0.27, and its 
maximum drawdown fell to -10.06%, demonstrating effective mitigation of downside 
risk. This is further evidenced by an increase in the Sortino ratio to 0.34, representing an 
improvement of 0.11 over the UW model.  

To better understand the behavior of each model, we analyzed the portfolio 
performance and asset allocation patterns across market regimes, specifically during bull 
and bear markets, throughout the test period. Table 8 illustrates the relative return 
performance of each model across different market regimes. In bull markets, the T 
model generated average weekly excess returns of 1.82 basis points, compared to 0.45 
basis points in bear markets. This outcome is consistent with the design of the model, 
which uses technical indicators to identify trends in price and volume. 

By contrast, the M model performed better in bear markets, achieving an average 
weekly excess return of 1.70 basis, which was 1.50 basis points higher than its 
performance in bull markets. The T+M model exhibited the most robust performance 
under adverse market conditions, generating 3.70 basis points of weekly outperformance 
in bear markets and surpassing the M model’s performance. This aligns with earlier 
findings that the T+M model demonstrates improved measures of downside risk, such as 
lower negative return volatility and a higher Sortino ratio. It also suggests that models 
incorporating macroeconomic variables are more effective at mitigating downside risk.  

 
 

Table 6.  Returns and Volatilities 

Model 
Cumulative 

Return 
Rel. Perf. 

Annualized 
Return 

Rel. Perf. Vol Rel. Perf. VolNegR Rel. Perf. 

UW 13.89 - 2.97 - 8.94 - 7.21 - 

T 17.02 3.12 3.60 0.63 9.74 0.79 7.66 0.45 

M 15.68 1.79 3.33 0.36 9.34 0.39 7.41 0.19 

T+M 17.63 3.74 3.72 0.75 9.18 0.23 7.18 -0.03 

T+1a 19.31 5.42 4.05 1.08 8.82 -0.12 6.06 -1.16 

T+1b 13.20 -0.70 2.83 -0.14 9.54 0.60 7.78 0.57 

T+1c 17.61 3.72 3.71 0.75 8.94 0.00 6.87 -0.34 

T+1d 17.38 3.48 3.67 0.70 9.50 0.56 7.44 0.22 

T+2a 27.22 13.32 5.56 2.59 9.32 0.38 6.75 -0.46 

T+2b 26.00 12.11 5.33 2.36 9.41 0.47 7.46 0.24 

T+2c 24.20 10.30 4.99 2.02 8.54 -0.41 6.16 -1.05 

T+2d 16.24 2.34 3.44 0.47 8.96 0.02 6.33 -0.89 

T+2e 6.08 -7.81 1.34 -1.63 9.00 0.06 6.88 -0.33 

T+3 15.62 1.72 3.32 0.35 8.49 -0.45 6.67 -0.54 

Note: This table reports the cumulative return, annualized return, volatility (Vol), and the volatility of negative 

excess returns relative to the risk-free rate (VolNegR) over the test period for each model, expressed in percentage 

terms. Models are defined in Table 4. The 3-month U.S. Treasury bill rate is used for the risk-free interest rate. 

Relative performance to the uniform weight (Rel. Pef.) strategy is reported in percentage points. Volatility is 

calculated as the standard deviation of weekly returns. All data are sampled from July 2018 to December 2022. 
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Table 7.  Performance Metrics 

Portfolio Sharp ratio Rel. Perf. 
Sortino 

ratio 
Rel. Perf. 

MDD 
(Monthly) 

Rel. Perf. 

UW  0.19  -  0.24  - -11.54 - 

T  0.24  0.05  0.31  0.07 -11.98 -0.44 

M  0.22  0.03  0.28  0.04 -12.62 -1.08 

T+M  0.27  0.08  0.34  0.11 -10.06 1.48 

T+1a  0.32  0.13  0.46  0.22 -9.28 2.26 

T+1b  0.17  -0.03  0.20  -0.04 -12.77 -1.23 

T+1c  0.28  0.08  0.36  0.12 -8.41 3.13 

T+1d  0.25  0.06  0.32  0.09 -13.50 -1.96 

T+2a  0.46  0.27  0.64  0.40 -9.39 2.15 

T+2b  0.43  0.24  0.55  0.31 -10.87 0.67 

T+2c  0.44  0.25  0.61  0.37 -6.89 4.65 

T+2d  0.24  0.05  0.35  0.11 -9.70 1.84 

T+2e  0.01  -0.18  0.01  -0.23 -11.02 0.52 

T+3  0.24  0.05  0.31  0.07 -8.38 3.16 

Note: Sharp ratio and Sortino ratio are measures of risk-adjusted performance. Models are defined in Table 4. The 

Sharp ratio is calculated using the mean and standard deviation of weekly returns, while the Sortino ratio uses VolNegR, 

defined as the standard deviation of weekly returns that fall below the risk-free rate, proxied by the 3-month U.S. 

Treasury bill return. Maximum drawdown (MDD) is computed based on monthly returns. Each variable’s relative 

performance to uniform weight represents the difference in outcome compared to the uniform weight (Rel. Pef.) 

model, allowing for more effective comparison of risk-adjusted performance across strategies. All data are sampled 

from July 2018 to December 2022. 

 
 

Table 8.  Relative Returns to Uniform Weight Model returns by Periods 
Period 1 2 3 4 5 6  1/3/5 2/4/6 1~6 

Regimes Bear Bull Bear Bull Bear Bull  Bear Bull Bull/Bear 

T -7.65  -2.07   5.11   3.82   3.76   3.25    0.45   1.82   1.33  

M -5.98  -1.77  -2.73   1.65   8.30  -2.26    1.70   0.25   0.76  

T+M -2.45   3.63   18.57  -2.09   1.80   3.80    3.70   0.21   1.46  

T+1a -7.05  -3.69   14.49   4.61   3.14   5.72    2.14   1.91   1.99  

T+1b  3.80   1.65   22.97   0.46   8.24   10.85    9.69   1.55   4.45  

T+1c  6.22   2.84   4.99  -3.52   5.05   5.35    5.41  -0.81   1.40  

T+1d -3.66   6.17   10.34  -1.93   1.93   4.58    1.80   1.20   1.42  

T+2a  5.49   1.33   22.83  -0.12   12.44   5.44    12.27   0.73   4.84  

T+2b  3.80   1.65   22.97   0.46   8.24   10.85    9.69   1.55   4.45  

T+2c  4.09   2.07   21.15   2.01  -3.41   26.68    3.68   3.68   3.68  

T+2d -2.26   5.16   6.23   1.66  -6.59   3.23   -2.76   2.93   0.90  

T+2e -4.30  -1.30   6.22   0.66  -12.79  -16.05   -6.47  -1.10  -3.01  

T+3  5.98   2.64  -2.04   0.72  -3.64  -3.15   -0.32   1.10   0.60  

Note: This table presents the relative return performance of each strategy across different market periods. Models 

are defined in Table 4. All values represent weekly excess returns relative to the uniform weight model and are 

expressed in basis points. The data spans the period from July 2018 to December 2022. 
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Figure 1 and Figure 2 presents the cumulative returns of the selected models. Overall, 
the comparative performance of the models highlights an important point. Although 
technical indicators are effective at capturing price momentum, they neglect the 
significant influence of macroeconomic factors on asset prices. Incorporating features 
related to economic growth, labor market conditions, and inflation enables the model to 
make more informed allocation decisions and enhances its capacity to manage downside 
risk in volatile markets. 

 

 

 
Note: This figure shows the cumulative returns for UW, T, M, and T+M models. Models are defined in Table 

4. The data spans the period from July 2018 to December 2022. 

 
Figure 1.  Cumulative Returns of UW, T, M, and T+M 
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Note: This figure presents the cumulative returns of models trained on different combinations of 

macroeconomic and technical variables. Models are defined in Table 4. The data spans the period from July 

2018 to December 2022. 

 
Figure 2.  Cumulative Returns of Models with Macroeconomic Variables 

 
 
5.2.  Contribution of Individual Macroeconomic Variables 
 
Previous analyses have demonstrated that incorporating technical and 

macroeconomic indicators enhances portfolio performance. To investigate the specific 
impact of each macro-variable, we conducted a series of experiments using different 
combinations of these macro-indicators. The unemployment rate and nonfarm payrolls 
were grouped as labor market indicators, while the CPI, ISM, and LEI were treated as 
separate variables. 

When each macroeconomic variable was added individually to the technical 
indicators, the CPI produced the most substantial performance gains, whereas the ISM 
underperformed the UW benchmark. Among all two-variable combinations, the CPI + 
ISM pairing (T+2a) achieved the highest cumulative return and lowest downside risk. 
This combination, which reflects both inflation dynamics and business cycle phases, is 
consistent with the widely adopted regime-based asset allocation approach in investment 
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practice. Section 5.1. shows that the resulting T+2a model, trained on CPI and ISM 
along with technical indicators, notably achieved a 13.32 percentage point improvement 
in cumulative returns over the UW benchmark, with substantial reductions in both 
maximum drawdown and downside deviation. The T+2a model achieved 12.27bp excess 
return during bear markets and 0.73bp during bull markets, demonstrating exceptional 
resilience in adverse conditions. These results demonstrate the ability of reinforcement 
learning models to adaptively implement regime-aware asset allocation strategies when 
macroeconomic information is incorporated into the learning process. 

Other combinations such as CPI + Labor (T+2b) and Labor + ISM (T+2c) also 
demonstrated strong performance. Overall, several selective combinations outperformed 
the model trained on the full macroeconomic set (T+M), highlighting the importance of 
identifying and focusing on impactful variables. These findings suggest that the targeted 
selection of key macroeconomic variables is more effective for performance 
enhancement than simply increasing the number of input features. 

 
5.3.  Regime-sensitive Allocation Decision 
 
The effectiveness of a model's asset allocation strategy is closely tied to its ability to 

adapt to shifting market regimes. The T model, agent-adjusted asset weights are based 
solely on technical indicators, often fails to adequately adjust asset exposures in 
response to macroeconomic or structural changes in the market environment. In contrast, 
models that incorporate macroeconomic information can dynamically rebalance 
portfolios to align with prevailing economic conditions, thereby enhancing performance 
and risk management. This section investigates how reinforcement learning-based 
models, with different inputs, vary their asset weights across different market regimes 
and evaluates their effectiveness in capturing regime-specific risks and opportunities. 

Table 9 shows the average weekly allocation of each model to different assets across 
various market conditions. The T model does not exhibit significant variation in 
allocation between bear and bull markets, maintaining an average distribution of close to 
25% per asset across the regimes. By contrast, the T+M model, which incorporates 
macroeconomic learning, reduced its equity allocation to 23.12% in the 3rd period, a bear 
market, and increased it to above 25.74% in the following period, a bull market, 
demonstrating regime-sensitive flexibility in managing equity exposure. During market 
downturns, the agent strategically decreases its equity holdings and increases allocations 
to government and corporate bonds -assets with a lower equity beta, effectively 
enhancing downside protection. 

The T+2a model increased its average allocation to government bonds to 27.38% 
during bear markets, while expanding its positions in equities and corporate bonds 
during bull markets to capture upside potential. For instance, in Regimes 1 and 3, where 
equities and government bonds have a negative correlation, the model allocated 28.09% 
and 30.31%, respectively, to bonds. In regime 5, where this correlation is positive, the 
bond allocation is reduced to 25.79%. By dynamically adjusting asset weights in 
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response to changing cross-asset betas, the T+2 model exhibited a high degree of 
adaptability to evolving market conditions and achieved the best overall performance 
during the test period. In summary, T+2a, T+2b, and T+2c model achieve excess returns 
in both the bull and bear markets, providing empirical support for the effectiveness of 
the dynamic asset allocation strategies enabled by reinforcement learning. 

 
 

Table 9.  Asset Allocation Weights by Market Regime 
Markets BIL LQD SPY TLT 

Model: T     

Bear 25.22% 24.59% 24.53% 25.66% 

Bull 25.17% 25.21% 24.74% 24.88% 

Period #1 (Bear) 25.55% 23.64% 23.97% 26.83% 

Period #2 (Bull) 26.99% 26.40% 23.36% 23.24% 

Period #3 (Bear) 21.01% 24.71% 27.01% 27.27% 

Period #4 (Bull) 23.89% 24.81% 25.40% 25.90% 

Period #5 (Bear) 26.66% 25.14% 23.92% 24.28% 

Period #6 (Bull) 27.56% 22.79% 25.76% 23.88% 

Model: T+M     

Bear 24.41% 26.80% 22.99% 25.81% 

Bull 24.40% 24.64% 24.68% 26.29% 

Period #1 (Bear) 26.27% 24.80% 24.43% 24.49% 

Period #2 (Bull) 24.79% 24.84% 23.29% 27.08% 

Period #3 (Bear) 20.88% 27.40% 23.12% 28.60% 

Period #4 (Bull) 24.23% 24.35% 25.74% 25.68% 

Period #5 (Bear) 24.60% 27.84% 22.01% 25.55% 

Period #6 (Bull) 23.97% 26.14% 22.10% 27.79% 

Model: T+2a     

Bear 24.63% 23.71% 24.27% 27.38% 

Bull 24.39% 25.32% 25.46% 24.83% 

Period #1 (Bear) 23.16% 26.12% 22.63% 28.09% 

Period #2 (Bull) 25.86% 24.18% 24.48% 25.48% 

Period #3 (Bear) 25.09% 20.68% 23.92% 30.31% 

Period #4 (Bull) 23.41% 26.26% 25.79% 24.54% 

Period #5 (Bear) 25.39% 23.37% 25.45% 25.79% 

Period #6 (Bull) 25.99% 22.55% 27.35% 24.11% 

Note: This table shows the average weekly allocation of each portfolio to different assets across various 

market conditions (bull vs. bear). Models are defined in Table 4. The values show how each strategy adjusts 

asset weights in response to changes in market conditions. The data spans the period from July 2018 to 

December 2022. 
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6.  CONCLUSION 

 
This study makes several key contributions to the existing literature on 

reinforcement learning asset allocation and portfolio optimization. First, we developed 
an end-to-end reinforcement learning framework in which the agent autonomously 
learns an optimal investment policy to maximize cumulative returns. The model 
incorporates a rich set of state variables -fundamental, technical, and macroeconomic- 
and reallocates portfolio weights on a weekly basis, eliminating reliance on traditional 
parameter estimations. This structure enhances portfolio performance while reduces 
downside risk by enabling the agent to respond adaptively to changing market and 
economic conditions. 

Second, we identify the macroeconomic variables that significantly enhance 
portfolio performance. Specifically, the combination of the CPI and the ISM leads to 
increase the portfolio excess returns, while the inclusion of other variables, such as labor 
market indicators, does not yield further improvements. This finding underscores the 
importance of feature or variable selection and highlights the tradeoff between input 
complexity and learning efficiency. 

Third, we conduct extensive ablation studies to isolate the effects of macroeconomic 
inputs and evaluate the performance across different market regimes. By stratifying the 
results into bull and bear markets, we provide a detailed understanding of the behavior 
of the model under changes in economic conditions. In addition to conventional 
performance metrics, such as cumulative return and the Sharpe ratio, we incorporate 
downside risk measures, including the volatility of negative excess returns and the 
Sortino ratio. These measures provide a more comprehensive assessment of performance, 
especially during unfavorable market conditions. 

Finally, this study makes an academic and practical contribution by expanding the 
applications of reinforcement learning beyond equity selection to multi-asset allocation 
across equities, government bonds, corporate bonds, and cash equivalents. This structure 
aligns with the decision-making processes typically employed by sophisticated investors. 
The proposed framework incorporates macroeconomic dynamics and enables cross-asset 
diversification. This provides a scalable, regime-sensitive approach with meaningful 
implications for academic research and applied portfolio management. 

This study presents a reinforcement learning-based asset allocation framework that 
integrates both technical and macroeconomic variables to capture market dynamics. The 
model demonstrates the ability to adapt portfolio weights in response to shifts in asset 
prices and market conditions, achieving strong performance in terms of return 
enhancement and risk reduction, particularly in mitigating downside risks. These 
findings provide empirical evidence of the possible application of reinforcement 
learning in multi-asset portfolio management. Future research can enhance the 
practicality and scalability of reinforcement learning based asset allocation models by 
extending the investment universe or incorporating global macroeconomic variables. 

 



JONG HA JEON, ZOONKY LEE AND DOJOON PARK 144

REFERENCES 

 
Bauman, T., S. Goluža, B. Gasperov, Z. Kostanjcaret (2024), “Deep Reinforcement 

Learning for Goal-Based Investing under Regime-Switching,” Proceedings of the 
5th Northern Lights Deep Learning Conference (NLDL), PMLR 233:13-19. 

Boyd, J.H., J. Hu and R. Jagannathan (2005), “The Stock Market’s Reaction to 
Unemployment News: Why Bad News Is Usually Good for Stocks,” Journal of 
Finance, 60 (2): 649-672.  

Chopra, V.K., and W.T. Ziemba (1993), “The Effect of Errors in Means, Variances, and 
Covariances on Optimal Portfolio Choice,” Journal of Portfolio Management, 19(2), 
6-11. 

Collin-Dufresne, P., K. Daniel and M. Sağlam (2022), “Liquidity Regimes and Optimal 
Dynamic Asset Allocation,” Journal of Financial Economics, 146 (2), 526-550.  

Das, S.R., D. Ostrov; S. Mittal; A. Radhakrishnan; D.R. Srivastav; H. Wang (2024), 
“Reinforcement Learning for Multiple Goals in Goals-Based Wealth Management,” 
2024 Artificial Intelligence for Business (AIxB), Laguna Hills, CA, USA, 2024, pp. 
1-8. 

Fischer, T.G (2018), “Reinforcement learning in financial markets-a survey,” FAU 
Discussion Papers in Economics, No. 12/2018, University of Erlangen-Nuremberg, 
Institute for Economics. 

Goldberg, L.S. and C. Grisse (2013), “Time Variation in Asset Price Responses to 
Macro Announcements,” National Bureau of Economic Research Working Paper 
No.w19523. 

Hamilton, J.D. and G. Lin. (1996), “Stock Market Volatility and the Business Cycle,” 
Journal of Applied Econometrics, 11(5), 573-593. 

Hornstein, A. (2016), “Unemployment Changes as Recession Indicators,” Federal 
Reserve Bank of Richmond Economic Brief No. 23-13 

Kelly, B. and D. Xiu (2023), “Financial Machine Learning,” Foundations and Trends in 
Finance, 13 (3–4), 205-363.  

Kim, M.J. and D. Kwon (2023), “Dynamic Asset Allocation Strategy: An Economic 
Regime Approach,” Journal of Asset Management, 24(2), 136-147.  

López de Prado, M. (2016), “Building Diversified Portfolios That Outperform out of 
Sample,” Journal of Portfolio Management, 42(4), 59-69.  

Long, H., A. Zaremba, W. Zhou, and E. Bouri (2022), “Macroeconomics Matter: 
Leading Economic Indicators and the Cross-Section of Global Stock Returns,” 
Journal of Financial Markets, 61, 100736.  

Maringer, D. and T. Ramtohul (2012), “Regime-Switching Recurrent Reinforcement 
Learning for Investment Decision Making,” Computational Management Science, 
9(1), 89-107.  

Markowitz, H.M (1952), “Portfolio Selection,” Journal of Finance, 7(1), 77-91.  
Marshall, D.A (1992), “Inflation and Asset Returns in a Monetary Economy,” Journal of 

Finance, 47(4), 1315-1342. 



REINFORCEMENT LEARNING BASED DYNAMIC ASSET ALLOCATION  145

McGuckin, R.H., A. Ozyildirim and V. Zarnowitz (2004), “Real-Time Tests of the 
Leading Economic Index: Do Changes in the Index Composition Matter?” Journal 
of Business Cycle Measurement and Analysis, OECD Publishing, Centre for 
International Research on Economic Tendency Surveys, 2, 171-191. 

Merton, R.C (1969), “Lifetime Portfolio Selection under Uncertainty: The 
Continuous-Time Case,” Review of Economics and Statistics, 51(3), 247-257.  

Moody, J. and L. Wu. (1997), “Optimization of Trading Systems and Portfolios,” 
Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial 
Engineering (CIFEr), IEEE. 

Park, H.J., M.K. Sim and D.G. Choi (2020), “An Intelligent Financial Portfolio Trading 
Strategy Using Deep Q-Learning,” Expert Systems with Applications, 158, 113573. 

Pendharkar, P.C. and P. Cusatis (2018), “Trading Financial Indices with Reinforcement 
Learning Agents,” Expert Systems with Applications, 103, 1-13.  

Souto, H.G. and F. Louzada (2024), “Ablation Studies for Novel Treatment Effect 
Estimation Models,” Statistics: Methodology Paper No.arXiv-2410. 15560v2, 
Cornell University 

Sugadev, T., N.S. Hameed; S. Vijayakumar; P. Tamilarasan; Md. Sahidul Islam (2023), 
“Portfolio Optimization Using Machine Learning Techniques,” 2023 4th 
International Conference on Computation, Automation and Knowledge Management 
(ICCAKM), Dubai, United Arab Emirates, 1-7. 

Tang, L. (2018), “An Actor-Critic-Based Portfolio Investment Method Inspired by 
Benefit-Risk Optimization,” Journal of Algorithms and Computational Technology, 
12(4), 351-360.  

Van Vliet, P. and D. Blitz (2011), “Dynamic Strategic Asset Allocation: Risk and Return 
across the Business Cycle,” Journal of Asset Management, 12, 360-375.  

Yang, H.Y., X. Liu, and Q. Wu (2018), “A Practical Machine Learning Approach for 
Dynamic Stock Recommendation,” 2018 17th IEEE International Conference on 
Trust, Security and Privacy in Computing And Communications/ 12th IEEE 
International Conference on Big Data Science and Engineering 
(TrustCom/BigDataSE), New York, NY, USA, 1693-1697. 

 
 
 
 
 
 
 
 
 
Mailing Address: Zoonky Lee, Yonsei University, Graduate School of Information, 50 
Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea, E-mail: zlee@yonsei.ac.kr. 
 

Received June 28, 2025, Accepted September 18, 2025. 


