
JOURNAL OF ECONOMIC DEVELOPMENT                             57 
Volume 47, Number 3, September 2022 

 

 

 
 

DEMOGRAPHIC STRUCTURE AND HOUSE PRICES IN THE UNITED 

STATES: RECONCILIATION USING METROPOLITAN AREA DATA* 

 

JIHEE ANN 
a
 AND CHEOLBEOM PARK 

b 

 
a Korea Real Estate Research Institute, South Korea 

b Korea University, South Korea  
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elderly population has a negative impact on house prices in most areas, the shape of the 

estimated age response function differs between areas. We further find via probit and logit 
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1.  INTRODUCTION 

 

Many advanced economies are experiencing rapid aging as a result of a drastic 
decline in fertility and death rates. For this reason, policymakers, investors, households, 
and economists are eager to understand the impact of aging on house prices. Two 
opposing views have been reported in the literature. Mankiw and Weil (1989), Takáts 
(2012), and Jäger and Schmidt (2017) argue that an increase in the share of the elderly 
population has a negative impact on house prices due to life cycle savings. That is, the 
prime working age generation increases the size of houses and raises house prices, 
whereas the elderly generation reduces house sizes and lowers house prices. Hiller and 
Lerbs (2016) also show that the growth rate of urban housing prices tends to be low in 
German cities where the population ages rapidly. In contrast, Green and Hendershott 
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(1996) argue that the aging of the population does not lower housing prices after 
controlling for education and income. Lisack et al. (2017) demonstrate that the real 
interest rate is lower in an aging economy, which raises house prices. Hort (1998) also 
finds a positive impact of aging.  

In the present study, we provide empirical evidence for the relationship between the 
demographic structure and house prices. We relate overall age distributions to house 
prices in 19 metropolitan areas in the US without imposing an a priori functional form 
on this relation. Consistent with the results of previous studies, we find both negative 
and positive impacts of aging, although most areas show a negative impact. We 
reconcile these conflicting results using the difference in the shapes of the estimated age 
response functions. We demonstrate that, when the share of the elderly population 
reaches a certain threshold, the relationship between the population distribution and 
normalized house prices changes. In particular, when the proportion of the elderly 
population is low, i.e., below the threshold, we observe a positive impact of aging on 
house prices. However, when the size of the elderly population relative to the working 
population exceeds the threshold, the age response functions tend to become inverted 
U-shaped, and the impact of the elderly population is more likely to be negative. We 
examine this hypothesis by conducting probit and logit regressions and show that, as the 
population of an area becomes older, the age response function is more likely to become 
inverted U-shaped, which illustrates the negative impact of the elderly population on 
house prices. 

This paper is organized as follows. Section 2 presents the econometric methodology 
employed in this paper, while Section 3 briefly discusses the data and Section 4 provides 
the main empirical analysis. Concluding remarks are presented in Section 5. 

 
 

2.  ECONOMETRIC MODEL 
 

To examine the relationship between the demographic structure and house prices, we 
consider the following econometric model: 

 

  =  + ∫   ( )
 

 ( )  +  ′  +   ,         (1) 

 
where    is the log price-rent ratio,    denotes the density function of the age 
distribution at time  ,   is the common compact support for   , and    includes 
control variables other than the population age distribution. The log price-rent ratio (  ) 
is the normalized house price and can be interpreted as the price-dividend ratio or 
price-earnings ratio in the stock market. That is, it is widely used as an indicator to 
determine whether house prices are correctly valued. Because of this economic meaning, 
the price-rent ratio has been examined in previous studies such as Himmelberg et al. 
(2005), Campbell et al. (2009) and Kishor and Morley (2015). As Campbell et al. (2009) 
and Kishor and Morley (2015) demonstrate that (expected) changes in house prices 
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explain a significant fraction of the log price-rent ratio variability at the metropolitan 
level in the US, the dynamics of the log price-rent ratio is more likely to be related with 
changes in house prices than rents. In addition,    should follow a stationary process in 
order for a semiparametric approach to be employed in Equation (1) (see Andrews, 
1991). For these reasons, the log price-rent ratio is used for    rather than the house 
prices in this study. 

Because the regressor    is the density function of age distribution, ∫   ( )
  

   

(where    is a subinterval of  ) is the fraction of individuals in age group    for the 

total population. Because we are relating the variation in the price-rent ratio to the 
variation in the entire age distribution (  ), we can avoid any arbitrariness arising from 
the choice of a specific age range or a particular demographic measure.1  ( ) in 
regression Equation (1) can be interpreted as the age response function that reflects the 
impact of the population age distribution on the price-rent ratio. As control variables, we 
include the growth rate of the regional population and the growth rate of the regional per 
capita income deflated by the corresponding regional consumer price index (CPI). 
Because migration between regions could be driven by current and expected income, 
which eventually affects the price–rent ratio, we include the growth rate of per capita 
income in addition to the demographic structure.  

Once an estimate for  ( ) is obtained, the age group that has a significant impact 
on the movement of the price-rent ratio can be determined, and the estimate of  ( ) 
can be compared with the implications of the theoretical models. Assuming a special 
form for  ( ), previous studies have considered the variants of the econometric model 
in Equation (1) to examine the relationship between the demographic structure and 
macroeconomic or financial variables. For example, the econometric model in Mankiw 
and Weil (1989) can be interpreted as a special case in which  ( ) is linear. Assuming 
a quadratic function for  ( ), Fair and Dominguez (1991) examine consumption and 
saving decisions. Higgins (1998) and Jäger and Schmidt (2017) assume a cubic function 
for  ( ) to estimate the impact of the age distribution on international capital flow and 
house prices, respectively.  

Unlike the above-mentioned studies, we do not impose an a priori special function 
for  ( ), which is consistent with Park (2010) in the sense that a flexible approach is 
employed. Instead, we assume that  ( )  must be sufficiently smooth to be 
approximated by a series of polynomials, trigonometric functions, or a mixture of both. 
That is, we assume that ‖  −  ‖ → 0 as  → ∞, where   ( ) is an approximation 
of  ( ) given by a combination of a finite series of functions   ,⋯ ,   . When 
  ( ) = ∑   

 
     ( ), Equation (1) can be expressed in a straightforward manner as 

 

  =  + ∑   
 
   ∫   ( )

 
  ( )  +  ′  +   , =  +     +   , ,    (2) 

 
1 Jäger and Schmidt (2017) instrument    based on past age distributions and show that the results are 

robust whether    is instrumented or not. Hence, we use    in the regression rather than instrumenting it. 
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where   , =   + ∫   ( )
 

( −   )( )  ,   = [  , … ,   ,  ′] and   =

[∫   ( )
 

  ( )  ,… , ∫   ( )
 

  ( )  ,   
 ]. Allowing   and   to be vectors 

for    and   , respectively, the LS estimator for    can be written as    =

(   )   ′ . Then, the corresponding series estimator for the age response function can 
be expressed as 

 
  (  ) = ∑    

 
     (  ),           (3) 

 
where    is an interval in  . 

In the empirical analysis, we test various series functions such as polynomials and 
mixtures of both polynomials and trigonometric functions, referred to as the Fourier 
flexible form (FFF) in Gallant (1981). The polynomial expansion of  ( ) can be 
written as   ( ) =    +    

 + ⋯+    
 , and the FFF expansion of  ( ) can 

be expressed as   ( ) =    +    
 + ∑ [  , 

 
      (2   ) +   ,    	(2   )] , 

where  = 2 + 2 . The selection of   (or, equivalently, the selection of   in the FFF 
expansion) is made based on h-block cross-validation (  ) and modified h-block    
criteria (   ), as suggested by Burman et al. (1994) and Racine (1997), respectively. 
The    can be expressed as 

 

  =    ∑ (  −   
     

    ( , ℎ)) ,          (4) 
 

where    ( , ℎ)  is the estimators of the coefficients in Equation (2) obtained by 
removing the t-th observation and the h observations preceding and following the t-th 
observation for the dependent and independent variables in the regression. The modified 

h-block    criterion, motivated by cases where 
 

 
 is not negligible, can be written as 

 
   =    ∑ (  

   
   −  

    ( , ℎ))  +	   ∑ ∑ (  
 
   −   

     
    ( , ℎ))   

+	   ∑ (  − 
     

    )
 .          (5) 

 
The   that minimizes    or     is selected in the analysis. 

 
 

3.  DATA 
 

We estimate the age response functions for 19 metropolitan areas in the US. These 
areas and the sample periods are listed in Table 1. The 19 metropolitan areas are selected 
because data for the rent of primary residences published by the Bureau of Labor 
Statistics (BLS), which is used as the tenant rent index in this study, is available for 
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these areas.2 Assuming that the rent paid by tenants is identical to the rent accruing to 
owner-occupiers, tenant rent indices for the 19 areas from the BLS are used. With the 
exception of Baltimore, Miami, Tampa, and Washington DC, the sample period is 
1975-2019. House price indices are taken from the Federal Housing Finance Agency. 
We adjust the rent scales using the average price–rent ratio for the corresponding areas 
in Campbell et al. (2009).3 Population structure data for the sampled areas are extracted 
from the US Census Bureau, and we use population estimates for 14 five-year age 
groups (ages 20-24, 25-29, …, 80-84, and 85 or above) to construct the annual age 
distribution. Regional population growth rates are also taken from the US Census 
Bureau. Finally, regional data for per capita income and the CPI are extracted from the 
Bureau of Economic Analysis and the BLS, respectively. All variables in this study are 
annual. 

 
 

Table 1.  Metropolitan Areas and Sample Periods 
Metropolitan Area Sample Period 

Atlanta-Sandy Springs-Roswell, GA 1975–2019 

Baltimore-Columbia-Towson, MD 1998–2019 

Boston-Cambridge-Newton, MA-NH 1975–2019 

Chicago-Naperville-Elgin, IL-IN-WI 1975–2019 

Dallas-Fort Worth-Arlington, TX 1975–2019 

Denver-Aurora-Lakewood, CO 1975–2019 

Detroit-Warren-Dearborn, MI 1975–2019 

Houston-The Woodlands-Sugar Land, TX 1975–2019 

Los Angeles-Long Beach-Anaheim, CA 1975–2019 

Miami-Fort Lauderdale-West Palm Beach, FL 1977–2019 

Minneapolis-St.Paul-Bloomington, MN-WI 1975–2019 

New York-Newark-Jersey City, NY-NJ-PA 1975–2019 

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1975–2019 

San Diego-Carlsbad, CA 1975–2019 

San Francisco-Oakland-Hayward, CA 1975–2019 

Seattle-Tacoma-Bellevue, WA 1975–2019 

St. Louis, MO-IL 1975–2019 

Tampa-St. Petersburg-Clearwater, FL 1987–2019 

Washington DC-Arlington-Alexandria, DC-VA-MD-WV 1998–2019 

 
2 The BLS publishes the index for the rent of primary residences for 23 metropolitan areas. Of these, the 

Phoenix-Mesa-Scottsdale area (2002–2019) in Arizona and the Riverside-San Bernardino-Ontario area 

(2017-2019) in California are not used because the period for the index is too short. Urban Alaska and urban 

Hawaii are also excluded because these two areas are not on the US mainland. 
3 The rent scales for Baltimore, Tampa, and Washington DC, which are not analyzed in Campbell et al. 

(2009), are adjusted using the national average price–rent ratio for the US.  
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4.  EMPIRICAL RESULTS 
 

Because we cannot expand  ( )  with an infinite number of functions, it is 
important to determine the number of series functions that should be included to achieve 
a good approximation. We use various series functions to compute    and    . In 
computing    and    , the block size, h, is set as the integer nearest to  /6 
following the suggestion by Burman et al. (1994). The results are shown in Table 2, with 
the lowest    and     for a given metropolitan area denoted by the use of bold text. 
The selected series functions differ between the 19 metropolitan areas, although the 
quadratic form is chosen most frequently.4 

Because different series functions are selected for different areas, we run the 
semiparametric regression in Equation (1) separately for individual areas rather than a 
pooled regression. Table 3 presents the estimated coefficients for the growth rates for the 
regional per capita income and regional population growth. The coefficients for the 
regional per capita income growth rate are negative but insignificant in most cases. The 
coefficients for regional population growth are positive in 12 of the 19 cases, with four 
of these significant. 

Figures 1 and 2 present the estimated age response functions for all areas in our 
study. Estimated age responses show different impacts of each age group on the 
price-rent ratio. Newey-West standard errors are used to construct the 95% confidence 
interval for the age response functions. Because different series functions are employed 
for different areas, the shapes of the estimated age response functions also differ 
between areas. However, the shapes of the age response functions can be categorized 
into two types, as presented in Figures 1 and 2. 

The estimated age response functions in Figure 1 are consistent with the life cycle 
hypothesis, indicating that the working age population has a positive impact and the 
elderly population has a negative impact on house prices. Overall, 13 metropolitan areas 
out of the 19 under study have this type of age response function, i.e., inverted U-shaped 
(Type 1), and the negative impact of aging in this group is consistent with the results in 
Mankiw and Weil (1989), Takáts (2012), and Jäger and Schmidt (2017). In contrast, the 
estimated age response functions shown in Figure 2 are compatible with Hort (1998) and 
Lisack et al. (2017), who report a positive impact of the elderly population on house 
prices. Six metropolitan areas are categorized as exhibiting this pattern (Type 2). Figures 
3 and 4 show that the fitted values from semiparametric regression track the actual 
price-rent ratios quite closely, regardless of the shape of the estimated age response 
function. 

 
4 For a given metropolitan area,    and     always indicate the same series function except for St. 

Louis. For St. Louis, there are slight differences in the    and     between the quadratic and cubic 

polynomials. Because Racine (1997) demonstrates that     performs better with a non-negligible 
 

 
, we 

use the cubic polynomial based on     for the estimation for St. Louis. 
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Table 2.  ℎ-block and Modified ℎ-block Cross-Validation Criteria 

  
Quadratic 

Polynomial 
Cubic 

Polynomial 
FFF 

 = 1 
FFF 

 = 2 
FFF 

 = 3 
FFF 

 = 4 
Atlanta 
 

CV	 0.017 0.020 0.027 0.032 0.047 0.071 

MCV	 0.028 0.030 0.039 0.043 0.059 0.086 

Baltimore 
 

CV	 0.038 0.079 0.123 0.141 0.146 14.021 

MCV	 0.055 0.128 0.179 0.226 0.230 16.491 

Boston 
 

CV	 0.081 0.134 0.229 0.180 0.305 0.394 

MCV	 0.129 0.185 0.308 0.228 0.375 0.476 

Chicago 
 

CV	 0.021 0.017 0.065 0.258 0.504 0.348 

MCV	 0.036 0.032 0.102 0.332 0.623 0.485 

Dallas CV	 0.009 0.022 0.056 0.028 0.023 0.046 

MCV	 0.015 0.030 0.072 0.036 0.029 0.060 

Denver CV	 0.013 0.071 0.143 0.083 0.133 0.213 

MCV	 0.029 0.103 0.194 0.105 0.165 0.264 

Detroit CV	 0.061 0.088 0.088 0.129 0.208 0.340 

MCV	 0.094 0.128 0.132 0.197 0.293 0.460 

Houston CV	 0.017 0.034 0.060 0.022 0.024 0.067 

MCV	 0.025 0.049 0.083 0.029 0.032 0.087 

Los Angeles CV	 0.066 0.097 0.060 0.147 0.501 0.698 

MCV	 0.110 0.145 0.102 0.235 0.657 0.897 

Miami CV	 0.185 0.343 0.778 0.762 0.478 0.877 

MCV	 0.594 0.845 1.305 1.044 0.769 1.155 

Minneapolis CV	 0.052 0.048 0.031 0.156 0.121 0.177 

MCV	 0.081 0.074 0.045 0.199 0.150 0.268 

New York CV	 0.204 0.206 0.130 0.165 0.206 0.166 

MCV	 0.294 0.278 0.168 0.209 0.248 0.199 

Philadelphia CV	 0.028 0.041 0.061 0.088 0.256 0.140 

MCV	 0.042 0.057 0.085 0.112 0.313 0.174 

San Diego CV	 0.037 0.040 0.039 0.194 0.422 0.371 

MCV	 0.068 0.072 0.070 0.289 0.551 0.485 

San Francisco CV	 0.041 0.057 0.140 0.586 1.681 0.983 

MCV	 0.080 0.098 0.196 0.712 2.053 1.205 

Seattle CV	 0.019 0.041 0.064 0.139 0.211 0.291 

MCV	 0.041 0.068 0.098 0.195 0.263 0.358 

St. Louis CV	 0.0203 0.0206 0.057 0.051 0.158 0.167 

MCV	 0.0337 0.0334 0.098 0.081 0.238 0.253 

Tampa CV	 0.065 0.282 0.262 0.223 0.322 0.156 

MCV	 0.099 0.403 0.358 0.317 0.456 0.192 

Washington 
DC 

CV	 0.040 1.155 0.417 1.011 0.788 0.616 

MCV	 0.067 2.006 0.669 1.755 1.272 0.918 

Note: The polynomial expansion of  ( ) can be written as   ( ) =    +    
 + ⋯+    

 , and the 

Fourier flexible form (FFF) expansion of  ( )  can be expressed as   ( ) =    +    
 + 

∑ [  , 
 
      (2   ) +   ,    	(2   )]. 
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Table 3.  Coefficients for Regional Per Capita Income Growth and Regional 
Population Growth 

 
Regional Per Capita Income Growth Regional Population Growth 

Atlanta -0.77 ** 0.02  

(0.34)  (1.88)  

Baltimore -2.82 *** -33.41 ** 

(0.83)  (13.69)  

Boston 0.35  1.11  

(0.78)  (9.90)  

Chicago -0.53  -12.43 ** 

(0.38)  (5.99)  

Dallas -0.32  2.28  

(0.27)  (1.47)  

Denver -0.51  0.17  

(0.34)  (1.90)  

Detroit -0.95 ** 2.48  

(0.42)  (3.15)  

Houston -0.22  0.66  

(0.26)  (0.81)  

Los Angeles -0.54  -19.98 *** 

(0.60)  (6.40)  

Miami 0.55  0.04  

(0.65)  (0.09)  

Minneapolis -0.03  6.77 * 

(0.41)  (3.46)  

New York -0.01  -27.98 *** 

(0.49)  (4.25)  

Philadelphia -1.69 *** 14.91 *** 

(0.41)  (3.03)  

San Diego -2.19 *** -6.04 * 

(0.52)  (3.06)  

San Francisco -0.58  -6.68  

(0.66)  (4.68)  

Seattle -0.72 * 2.25  

(0.42)  (2.17)  

St. Louis -0.39  10.93 ** 

(0.50)  (5.23)  

Tampa -0.20  12.51 *** 

(0.69)  (3.32)  

Washington DC -0.01  -20.90 ** 

(0.78)  (7.28)  

Note: Numbers in parentheses represent the standard errors. *, **, and *** denote that the coefficient is 

significant at the 10%, 5%, and 1% levels, respectively. 
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Note: This figure shows estimated age response functions which plotting impacts of each age group on the 

price-rent ratio. 

 
Figure 1.  Estimated Age Response Functions: Type 1 
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Dallas Denver Houston 

 
Los Angeles Minneapolis New York 

 

Note: This figure shows estimated age response functions which plotting impacts of each age group on the 

price-rent ratio. 

 
Figure 2.  Estimated Age Response Functions: Type 2 

 
 

Given the differences in the shape of the age response functions, we determine 
whether these differences can be reconciled. We conjecture that differences in the age 
response functions may be associated with the degree of aging within the sampled areas. 
For example, the proportion of the population aged 60 or above in Dallas or Houston is 
approximately 16%, while that in Tampa is around 26%. When the relative size of the 
elderly population is low, the housing demand from the working age population can 
absorb the negative impact of the elderly population on house prices, which suggests 
that an increase in the proportion of the elderly population does not necessarily have a 
negative impact on house prices. However, when the size of the elderly population 
exceeds a certain threshold, its negative impact on house prices is more pronounced. As 
a result, the estimated age response function will be inverted U-shaped and exhibit 
negative coefficients for the elderly. 

To investigate whether the shape of an estimated age response function (i.e., Type 1 
or 2, as shown in Figures 1 and 2, respectively) is related to the degree of aging, we 
consider the following probit regression model: 
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∗ =   +     +   ,            (6) 

 
where   ~ (0,1) and    denotes the degree of aging. As the degree of aging increases, 
the latent variable     

∗ is likely to exceed a certain threshold and the estimated age 
response functions tends to be inverted U-shaped (as in Figure 1), which is expressed as 
    = 1 in the probit regression. In contrast, when     

∗ is below the threshold, the 
estimated age response functions increase for the elderly population (as in Figure 2), 
which is expressed as     = 0. Thus,      is an indicator of the shape of an age 
response function. When the age response function is inverted U-shaped, i.e., Type 1 in 
Figure 1,      is set at 1. Otherwise,      is set at 0.5  

In the probit regression,    is the ratio of the population aged between 40 and 64 to 
the population aged 65 and above in 2019. As the population of a metropolitan area 
becomes more (less) aged,    will be lower (higher) and the shape of the age response 
function is more likely to be Type 1 (2), which implies that     = 1	(0).  

Hence, if our conjecture is correct, then    in Equation (6) will be negative. The 
results are presented in the first panel of Table 4. Although we have a small number of 
observations,    is significantly negative at the 5% level, as shown in the first column. 
When we switch    to the ratio of the population aged between 20 and 64 to the 
population aged 65 and above in 2019, we can also obtain a significantly negative   , 
which is further supporting evidence for our conjecture. When we use the proportion of 
the population aged 60 or above in 2019 to measure the degree of aging, then    
increases with the degree of aging. As a result,    is positive under our conjecture, 
which is consistent with the results in the final column of the first panel in Table 4.6 

We also conduct logit regression to check the robustness of the results from the 
probit regression. As shown in the second panel of Table 4,    is significantly negative 
at the 10% level when    is the ratio of the population aged between 40 and 64 to the 
population aged 65 and above or the ratio of the population aged between 20 and 64 to 
the population aged 65 and above.    also becomes significantly positive when    is 
the proportion of the population aged 60 or above. 

 
 

 
5 Although a quadratic polynomial is chosen and the estimated coefficient of the quadratic term is 

negative for Denver, the estimated age response function increases for the elderly population. Hence, Denver 

is categorized as Type 2. The results of the probit regression in Table 4 are not significantly affected even 

when Denver is excluded from the regression analysis. These results are available upon request. 
6 Although quadratic polynomials are chosen and the estimated age response functions are inverted 

U-shaped, the coefficients of the age response function over the elderly population are positive in Atlanta, 

Philadelphia, and San Diego. Even if we exclude these areas from the regression analysis considering the 

discrepancy between the shape of the age response function and the sign of the coefficients over the elderly 

population, the regression results do not change qualitatively, and    is robustly significant. These results 

are available upon request. 
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Note: This figure shows fitted values of price-rent ratio from semiparametric regression in Equation (2). 

 
Figure 3.  Fitted Values for Semiparametric Regression: Type 1 
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Dallas Denver Houston 

 
Los Angeles Minneapolis New York 

 

Note: This figure shows fitted values of price-rent ratio from semiparametric regression in Equation (2). 

 
Figure 4.  Fitted Values for Semiparametric Regression: Type 2 

 
 

Table 4.  Shape of the Age Response Functions and Aging Measures 

    =  
1		for	the	age	response	functions	in	Figure	1
0		for	the	age	response	functions	in	Figure	2

  

    (40-64)/(65+) (20-64)/(65+) (60+) 

Probit regression 

    
 
 

6.2376** 

(2.6146) 
[0.017] 

5.9137** 
(2.3245) 
[0.011] 

-6.6392** 

(2.8701) 
[0.021] 

    
 
 

-2.6129** 

(1.1836) 
[0.027] 

-1.3025** 

(0.5409) 
[0.016] 

34.3665** 
(13.9447) 
[0.014] 

Logit regression 

  	 	
 
 

10.1376** 
(5.0682) 
[0.045] 

9.7310** 
(4.7844) 
[0.042] 

-10.8931* 
(5.9438) 
[0.067] 

  	 	
 
 

-4.2415* 
(2.2518) 
[0.060] 

-2.1365* 
(1.1093) 
[0.054] 

56.5204* 
(29.2391) 
[0.053] 

Note: Numbers in parentheses represent the standard errors and the numbers in brackets are the p-values for 

  :	  = 0. *, and ** denote that the coefficient is significant at the 10% and 5% levels, respectively. 
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Overall, these results suggest that the shape of the age response function depends on 
the degree of aging and that, as the population of an economy becomes more aged, the 
shape of the age response function is more likely to be as shown in Figure 1, which is 
consistent with the life cycle hypothesis and the negative impact of aging on house 
prices. 

 
 

5.  CONCLUSION 
 
We run semiparametric regressions for the price–rent ratio on the population age 

distribution for 19 metropolitan areas in the US to understand the impact of aging on 
house prices. Although many areas have an inverted U-shaped age response function, 
different series functions are selected and age response functions with different shapes 
are estimated between areas, which is consistent with the conflicting results reported in 
previous studies. Thus, the elderly generation has a negative impact on house prices in 
some metropolitan areas while they have a positive impact in other areas. We show that 
this difference in the shape of age response functions can be explained by the degree of 
aging in those areas. In particular, by conducting probit and logit regressions, we verify 
that the shape of the age response function is more likely to be inverted U-shaped as the 
population of a metropolitan area becomes more aged, which indicates that the shapes of 
the age response function are associated with the degree of aging. These results suggest 
that the impact of aging on house prices is negative eventually when an area becomes 
more aged.  

 Finally, changes in demographic structure may affect rents as well as house prices. 
Hence, our findings from probit and logit regressions may reflect different impacts of 
aging on rents and house prices. We think that the examination of differential impacts of 
aging on rents and house prices is an interesting future research topic. 
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