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We use an ARFIMA approach to develop reference scenario projections for CO2 

emissions worldwide and for seven different regions. Our objective is to determine the 

magnitude of the policy efforts necessary to achieve the IPCC emissions reductions goals. 

For worldwide emissions, the aggregate policy effort required to achieve the 2050 goals is 

equivalent to 97.4% of 2010 emissions. This policy effort is frontloaded as about 60% of 

such efforts would have to occur by 2030. In order to achieve the IPCC target the policy 

efforts in the cases of the USA, EU(28), Russia, and Japan are lower and less frontloaded 

than the IPCC goals themselves. In the case of China, India and the ROW, additional policy 

efforts are necessary to achieve reductions in emissions of 105.0%, 156.0% and 111.4%, of 

the 2010 levels, respectively. In the case of India, policy efforts are not only rather severe 

but also rather dramatically frontloaded, as about 74% of the policy efforts would have to 

occur by 2030. 
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1.   INTRODUCTION 

 
The purpose of this article is to provide reference forecasts for aggregate CO2 

 
* This is one of two twin papers on the issue of developing new reference CO2 emissions forecasts and 

identifying their implications for the policy efforts towards decarbonization. The other paper “ARFIMA 

Reference Forecasts for Worldwide CO2 Emissions and the Need for Large and Frontloaded Decarbonization 

Policies” focuses on aggregate worldwide CO2 emissions by source – solid fossil fuels, liquid fossil fuels, 

natural gas, cement production, and gas flaring. The first author would like to acknowledge financial support 

from FCT–Fundação para a Ciência e a Tecnologia (grant UID/ECO/04007/2019). 
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emissions for the six largest regional emitters – China, the USA, the European Union, 
India, Russian, and Japan, as well as the Rest of the World (ROW, henceforward), based 
on an ARFIMA approach. Our ultimate objective is to compare our reference forecasts 
with the relevant policy emissions targets set up by the IPCC and thereby ascertain the 
magnitude of the policy effort necessary across different regions of the world to achieve 
such targets.  

There is strong scientific evidence confirming the warming the planet's climate 
system, with increasing temperature of the atmosphere and oceans, rising sea levels, 
melting ice, among others, whose most likely causes are the increased concentration of 
anthropogenic greenhouse gas emissions in the atmosphere (IPCC, 2014).  

Recently, the IPCC (2018) report has pointed that limiting global warming to 1.5°C 
would require “rapid and far-reaching” transitions in land, energy, industry, buildings, 
transport, and cities. Global net anthropogenic emissions of CO2 would need to fall by 
about 45% from 2010 levels by 2030, reaching carbon neutrality by 2050. The IPCC 
suggests that the natural carbon sequestration capacity by 2050 will be approximately  
15% of the 2010 reference emissions. Accordingly, carbon neutrality requires by 2050 a 
reduction of 85% of 2010 emission levels. The question remains, however, as to the 
magnitude and timing of the policy efforts necessary to achieve such goals.  

Identifying the proper reference scenario is critical first step in ascertaining the 
extent of the policy effort required to achieve any policy target for CO2 emissions. 
Specifying a reference scenario in the typical “business as usual” projections, means 
predicting a path to CO2 emissions that reflect existing demographic trends, prospective 
trends for energy and industrial processes, for the services, residential, transport and 
waste sectors, as well as, ongoing policy commitments. This conventional approach to 
establishing reference scenarios, however, introduces a large number of working 
assumptions and a great degree of arbitrariness in their specifications, thereby clouding 
the information it intends to provide. 

This paper uses an ARFIMA approach to provide reference forecasts for worldwide 
CO2 emissions based on a comprehensive univariate statistical analysis of the different 
time series and recognizing the possible presence of long-memory through fractional 
integration. Accordingly, our forecasts are based strictly on the most basic statistical 
fundamentals of the stochastic processes that underlie CO2 emissions. As such, they 
capture the information included in the sample, and implicitly assume that the observed 
trends will continue in the future. Thus, these forecasts provide the most fundamental 
reference case forecast of CO2 emissions (Belbute and Pereira, 2015, 2017). 

There is now an extensive literature on fractional integration, which goes beyond the 
stationary/non-stationary dichotomy to consider the possibility that variables may follow 
a long memory process (see, among others, Diebold and Rudebusch (1991), Lo (1991), 
Sowell (1992a) and Palma (2007)). The ARFIMA methodology is inspired by a budding 
literature on the analysis of energy and carbon emissions based on a fractional 
integration approach (see, for example, Barassi et al. (2011), Apergis and Tsoumas, 
(2011, 2012), Barros et al. (2016), Gil-Alana et al. (2015) and Belbute and Pereira  
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(2015, 2017)).  
Measuring the persistence of CO2 emissions is of utmost importance for the design 

of energy and environmental policies. If emissions are stationary, then transitory public 
policies will tend to have only transitory effects. Permanent changes, therefore, require a 
permanent policy stance. On the other hand, if emissions are not stationary, then even 
transitory policies will have permanent effects on emissions, and a steady policy stance 
is less critical (see, for example, Zerbo and Darné (2019)). 

The fractional integration approach goes beyond this dichotomy to consider the 
possibility that variables may follow a long-memory process. This long-range 
dependence is characterized by a hyperbolically-decaying autocovariance function, and 
by a spectral density that approaches infinity as the frequency tends to zero. Long 
memory, therefore, implies a significant dependence between observations widely 
separated in time, and, as such, the effects of policy shocks may be temporary but     
long lasting. Accordingly, this property has important policy implications for the 
specification of long-term reference case scenarios for CO2 emissions.  

Finally, our methodological framework has to be understood also in the context of  
the current debate on which benchmark should be used to assess policy efforts and 
monitor the achievement of the goals associated, for example, with the UN Sustainable 
Development Goals or different decarbonisation goals. Indeed, our ARFIMA projections 
reflect the CO2 emissions that should exist at a future date in the absence of the target 
rather than the value recorded in a particular year, as was the case with the Kyoto 
Protocol targets and, more recently, with the Paris agreement (Markandaya et al., 2019). 

The remainder of this paper is organized as follows. Section 2 presents and describes 
the data set. Section 3 provides a brief technical description of the methodology used. 
Section 4 discusses the empirical findings, considering first the fractional integration 
analysis and then the accuracy of in-sample forecasts. Section 5 presents and discusses 
our reference forecasts vis-à-vis the IPCC new targets. Finally, section 6 provides a 
summary of the results, and discusses their policy implications. 

 
 

2.   DATA: SOURCES AND DESCRIPTION 
 

2.1.   Data Sources 
 
In this paper, we use annual data for global CO2 emissions for the period between 

1950 and 2017. The data until 2014 is from the Carbon-Dioxide Information Analysis 
Centre (Boden et al., 2017). This data set contains information going back to 1870. 
Nevertheless, we have elected to work only with data starting in 1950, given the 
profound structural changes that occurred after World War II. Data for 2015-2017 is 
based on both the national emissions inventories collected by the United Nations 
(UNFCCC, 2018). 

Aggregate CO2 emissions are the sum of five components: emissions from burning 
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fossil fuels – solid/coal, liquid/oil, gas and gas flaring, and emissions from cement 
production. It does not consider emissions from land use, or land-use change and 
forestry. In terms of its regional decomposition we consider seven blocks: China; the 
USA; the EU(28), the 28 countries currently making up the European Union; India; the 
Russian Federation, including before 1991 the part of the USSR corresponding to Russia; 
Japan; and ROW. All variables are measured in million metric tonnes of carbon per year 
(Mt, hereafter), and were converted into units of carbon dioxide by multiplying the 
original data by 3.664, the ratio of the two atomic weights. entrepreneurial risk and 
provides some kind of insurance (Thornton and Flynn, 2003; Smith, 2018). It also 
reduces transaction costs between actors, search and information costs, bargaining costs, 
and decision costs (Landry et al., 2002). 

 
2.2.   Description of the Data 
 
Table 1 presents summary information about our data. During the sample period, 

worldwide CO2 emissions grew incessantly, reaching its highest value of 36,767 Mt in 
2017. This value is 65% above the emissions observed in 1990 and 10% above the 2010 
levels.  

CO2 emissions in China have steadily increased from 78Mt in 1950 to 9,839Mt in 
2017, making it the world leader in emissions. China is currently responsible for 26.8% 
of worldwide emissions, a share that sharply increased over the sample period. In turn, 
CO2 emissions in the USA increased from 2,536Mt in 1950 to a peak of 6,132 Mt in 
2005 and declined thereafter. In 2017, the USA contributed 5,270Mt to global emissions. 
This figure corresponds to 14.3% of worldwide emissions, making the USA the second 
largest polluter. This share, however, has been steadily decreasing since the 1950s when 
it reached 36.6%. 

The EU(28) was responsible in 2017 for 9.6% of worldwide CO2 emissions making 
it the third largest polluting block. In 1950, this share was 30.1% and has consistently 
decreased ever since. EU(28) emissions peaked in 1979 at 4,724Mt and have declined 
particularly after 2005. On the other hand, in India, CO2 emissions have grown steadily 
from 66.7Mt in 1950 to 2,467Mt in 2017. India's emissions accounted for 1.1% of 
worldwide emissions in the 1950s. This share reached 6.7% in 2017, making India the 
fourth largest emitter. 

Russia is the fifth largest CO2 emitter having contributed in 2017 about 4.6% of 
worldwide emissions. Emissions increased from 418Mt in 1950 to 1.693 in 2017, with a 
peak of 2.571Mt in 1990. Russia’s sharp drop in emissions in the 1990s is due to the 
breakup of the USSR in 1991. In turn, in Japan, CO2 emissions reached 1,205Mt in 
2017, which represents 3.3% of worldwide emissions and makes Japan the sixth largest 
regional CO2 emitter. Finally, CO2 emissions from the ROW have increased 
persistently over the sample period, from 972Mt in 1950 to 12,751Mt in 2017. The share 
of emissions from the ROW in worldwide emissions increased from 18.6% in the 1950s 
to 34.7% in 2017. 
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Table 1.   CO2 Emissions from Fossil Fuel Combustion and Cement Production 

Years 
Global 

Mt 
China USA EU(28) India Russia Japan  ROW 

 Average Shares of Total Worldwide CO2 Emissions (%) 

1950-1959 7391 3.2 36.6 30.2 1.1 8.3 2.0 18.6 

1960-1969 11292 4.6 29.8 28.3 1.4 10.0 3.5 22.4 

1970-1979 17141 6.4 27.0 25.2 1.4 10.4 5.1 24.4 

1980-1989 20003 9.4 22.9 21.9 2.1 11.5 4.7 27.6 

1990-1999 23077 13.0 23.6 18.5 3.5 8.0 5.2 28.2 

2000-2009 28613 18.6 21.1 14.9 4.3 5.6 4.4 31.0 

2010-2017 35592 26.8 15.4 10.3 5.9 4.7 3.5 33.4 

2010 33445 25.4 17.0 11.8 5.1 5.0 3.6 32.1 

2017 36767 26.8 14.3 9.6 6.7 4.6 3.3 34.7 

 

 
 

3.   FRACTIONAL INTEGRATION 
 

3.1.   Fractionally Integrated Processes 
 
A fractionally-integrated process is a stochastic process with a degree of integration 

that is a fractional number, and whose autocorrelations decay slowly at a hyperbolic rate 
of decay. Accordingly, fractionally-integrated processes display long-run rather than 
short-term dependence and for that reason are also known as long-memory processes.  

A time series   =   −     is said to be fractionally integrated of order  , if it can 
be represented by 
 

(1 −  )   =   ,  = 1, 2, 3, ⋯ ,  ,                        (1) 
 
where, 	  is the coefficients vector,    represents all deterministic factors of the process, 
  ,	 and  = 1, 2, 3, ⋯ ,  ,   is the lag operator,   is a real number that captures the long-
run effect, and    is  (0). 

Allowing for values of “ ” in the interval between 0 and 1 gives extra flexibility 
when modeling long-term dependence. Indeed, in contrast to an  (0) time series (where 
 = 0) in which shocks die out at an exponential rate, or an  (1) process (where  = 1) 
in which there is no mean reversion, shocks to the conditional mean of an  ( ) time 
series with 0 <  < 1  dissipate at a slow hyperbolic rate. More specifically, if     
−0.5 <  < 0, the autocorrelation function decays at a slower hyperbolic rate but the 
process has a rebounding behavior or a negative correlation. If 	0 <  < 0.5 , the 
process	reverts to its mean but the auto-covariance function decreases slowly as a result 
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of the strong dependence on past values. The effects will last longer than in the pure 
stationary case ( = 0 ). If 	0.5 <  < 1,  the process is non-stationary with a time-
dependent variance, but the series retains its mean-reverting property. Finally, if	 ≥ 1, 
the process is non-stationary and non-mean-reverting, i.e. the effects of random shocks 
are permanent (for details see, for example, Granger and Joyeux (1980), Granger (1980, 
1981), Sowell (1992a, 1992b), Baillie (1996), Palma (2007) and Hassler et al. (2016), 
Belbute and Pereira (2015)). 

 

3.2.   ARFIMA Processes 
 
An ARFIMA model is a generalization of the ARIMA model which frees it from the 

I(0)/I(1) dichotomy, therefore allowing for the estimation of the degree of integration of 
the data generating process. In an ARMA process the AR coefficients alone are 
important to assess whether or not the series is stationary. In the case of the ARFIMA 
model, the   ( ) and   ( ) terms are treated as part of the model selection criteria. 
Accordingly, the ARFIMA approach provides a more comprehensive and yet more 
parsimonious parameterization of long-memory processes than the ARMA models. 

Moreover, in the ARFIMA class of models, the short-run and the long-run dynamics  
is disentangled by modeling the short-run behavior through the conventional ARMA 
polynomial, while the long run is captures by the fractional differencing parameter,   
(see, among others, Bollerslev and Mikkelsen (1996)). 

If the process {  }  in (1) is an      ( ,  ),  then the process {  }  is an 
      ( ,  ,  ) process and can be written as 

 
 ( )(1 −  )   =  ( )  ,             (2) 
 

where  
 ( ) = 1 −    −     −		…		−     = 0, 

	 ( ) = 1 +    +     +		…		+     = 0 

 
are the polynomials of order   and   respectivelly, with all zeroes of lying outside the 
unit circle, and with   	as white noise. Clearly, the process is stationary and invertible 
for	−0.5 <  < 0.5. 

The estimation of the parameters of the ARFIMA model  ,  ,  ,   and 	   is done 
by the method of maximum likelihood. The log-Gaussian likelihood of   given 
parameter estimates  =̂ (  ,   ,   ,   ,    ) was established by Sowell (1992b) as 

 

ℓ ( | )̂ = −
 

 
  log(2 ) + log    +         ,         (3) 

 
where   represents a  - dimensional vector of the observations on the process          
  =   −     and the covariance matrix   has a Toeplitz structure.  

 



ARFIMA REFERENCE FORECASTS FOR WORLDWIDE CO2 EMISSIONS 7

3.3.   ARFIMA Forecasting and Prediction-Accuracy Assessment 
 
Given the symmetry properties of the covariance matrix,   can be factored as      

 =    ′, where	 = Diag(  ) and   is lower triangular, so that;  
 

 ′ =

⎣
⎢
⎢
⎢
⎡

1 0 0 … 0
  , 1 0 … 0

  ,   , 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮

 (   ),(   )  (   ),(   )  (   ),(   ) … 1⎦
⎥
⎥
⎥
⎤

.          (4) 

 
Moreover, let   =   

    ,   = (  ,   , … ,   )
  and    is the  	 × 	  upper left sub-

matrix of  . 
Let	  =   −    . The best linear forecast of      based on  ,   , …	   is  
 

     = ∑   ,       
 
   .                (5) 

 
Moreover, the best linear predictor of the innovations is  =̂     , and the one-step-

ahead forecasts for   , in matrix notation, is 
 

  =       −     +    .               (6) 

 

Forecasting is carried out as suggested by Beran (1994) so that      =    
       , 

where    = (       ,        , … ,    ) . The accuracy of predictions is based on the 

average squared forecast error, which is computed as 	          =    −  ′         . 

There is a wide diversity of loss functions available and their properties vary 
extensively. Even so, all of these share a common feature, in that “lower is better.” That 
is, a large value indicates a poor forecasting performance, whereas a value close to zero 
implies an almost-perfect forecast. We use three average loss indicators: the Mean 
Absolute Percentage Error (MAPE), the Adjusted Mean Absolute Percentage Error 
(AMAPE), and the U-statistic inequality coefficient. 

The MAPE and the AMAPE are relative measures, in that they are percentages. In 
particular, the MAPE is the percentage error, and has the advantage of having a lower 
bound of zero. Therefore, the lower the indicator the greater the model’s forecast 
accuracy. Nevertheless, this loss function has drawbacks in any practical application. 
First, with zero values, we have a division by zero issue. Second, the MAPE does not 
have an upper limit. The AMAPE corrects almost completely the asymmetry problem 
between actual forecast values and has the advantage of having both a zero lower bound 
and an upper bound. Like the MAPE, the smaller the AMAPE, the greater the accuracy 
of predictions.  

The U-statistic provides a measure of how well a time series of estimated values 
compares to a corresponding time series of observed values. The Theil inequality 
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coefficient lies between zero and one, with zero suggesting a perfect fit. It can be 
decomposed into three sources of inequality: bias, variance, and covariance proportions 
coverage. The bias component of the forecast errors measures the extent to which the 
mean of the forecast is different from the mean of the recorded values. Similarly, the 
variance component tells us how far the variation of the forecast is from the variation   
of the actual series. Finally, the covariance proportion measures the remaining 
unsystematic component of the forecasting errors. As expected, the three components 
add up to one.   

 
 

4.   THE BASIC EMPIRICAL RESULTS 
 

4.1.   Fractional Integration Analysis 
 
In Table 2, we present the results of the estimations of the different ARFIMA( ,  ,  ) 

model. The best specifications were selected using the Schwartz Bayesian Information 
Criterion (BIC) and include statistically significant autoregressive and moving-average 
terms.  

 
Table 2.   Fractional-Integration Results: 1950-2017 

Variable Coefficient Estimate Std. Err. p-value Significance Interval 

Global 

   1.640 0.188 0.000 [ 1.272 ; 2.008 ] 
   -0.643 0.187 0.001 [ -1.010 ; -0.276 ] 
   -0.512 0.151 0.001 [ -0.808 ; -0.216 ] 
   0.262 0.126 0.038 [ 0.015 ; 0.509 ] 
  0.270 0.144 0.060 [ -0.012 ; 0.552 ] 

China 
   0.980 0.018 0.000 [ 0.945 ; 1.015 ] 
   0.544 0.113 0.001 [ 0.323 ; 0.765 ] 

  0.444 0.068 0.001 [ 0.311 ; 0.577 ] 

USA 
   0.990 0.008 0.000 [ 0.974 ; 1.006 ] 
  0.226 0.097 0.020 [ 0.036 ; 0.416 ] 

EU(28) 
   0.989 0.010 0.000 [ 0.969 ; 1.009 ] 
  0.273 0.091 0.003 [ 0.095 ; 0.451 ] 

India 
   0.992 0.009 0.000 [ 0.974 ; 1.010 ] 
   0.558 0.125 0.000 [ 0.313 ; 0.803 ] 
  0.322 0.078 0.000 [ 0.169 ; 0.475 ] 

Russia 
   0.977 0.022 0.000 [ 0.934 ; 1.020 ] 
   -0.391 0.143 0.002 [ -0.671 ; -0.111 ] 

  0.417 0.082 0.000 [ 0.256 ; 0.578 ] 

Japan 
   0.985 0.016 0.000 [ 0.954 ; 1.016 ] 

  0.299 0.099 0.002 [ 0.105 ; 0.493 ] 

ROW 
   0.997 0.004 0.000 [ 0.989 ; 1.005 ] 
   0.415 0.112 0.000 [ 0.195 ; 0.635 ] 
  0.193 0.071 0.007 [ 0.054 ; 0.332 ] 

Note:     stands for the estimated value of the parameter associated with      of the AR component and    

stands for the estimated value of the stochastic term of order q (     ) of the MA component. 
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We perform preliminary tests for the existence of structural breaks for all variables 
following the procedures in Bai-Perron (2003). Test results suggest the absence of 
significant evidence for break points. Still, when by simple visual inspection of the data 
we suspected the possible presence of break points, a dummy variable was included in 
the ARFIMA models. The corresponding estimated coefficients, however, are never 
statistically significant and the best specification for ARFIMA models as indicated by 
the BIC never includes structural breaks. 

Our results provide strong empirical evidence for the non-rejection of the presence 
of long memory for worldwide CO2 emissions as well as its regional components. The 
estimated values of the fractional parameter   are all between 0 and 1, thus allowing us 
to reject both the case of pure stationarity model ( = 0) and the case of a unit root 
model ( = 1). All series exhibit long-term memory as all estimated parameters   lie 
within the interval (0, 0.5). 

Total emissions have a degree of persistence of  = 0.270	 and the degree of 
fractional integration ranges from a minimum of 0.193 for the ROW to a maximum of 
0.444 for China. Furthermore, the degree of persistence we estimate for worldwide 
emissions corresponds to the exact convex combination of the seven individual regions, 
which attests to the accuracy of our estimates. 

All of the estimates of the fractional integration parameter are statistically significant 
at 1%. For China and Russia, however, the upper bound is greater than 0.5, leaving open 
the possibility that CO2 emissions from these countries may be non-stationary, though 
still mean reverting. 

 

4.2.   In-Sample Global CO2 Emissions Forecasts 
 

Figure 1 plots the actual values against the in-sample forecasts for CO2 emissions 
between 1950 and 2017 while Table 3 summarizes our forecasting accuracy analysis for 
the in-sample predictions.  

 
 

Table 3.   In-sample Forecast Accuracy Analysis: 1950-2017 

 
Global China  USA EU(28) India Russia  Japan ROW 

Mean Absolute Percentage Error 
(MAPE) 

3.2% 
 

7.9% 
 

4.1% 
 
 

3.7% 
 
 

4.2% 
 
 

4.6% 
 
 

4.4% 
 
 

3.4% 
 

Adjusted Mean Absolute Percentage 
Error (AMAPE)   

2.3% 
 

4.8% 
 

2.8% 
 
 

2.6% 
 
 

2.9% 
 
 

3.0% 
 
 

2.3% 
 
 

1.7% 
 

Theil Inequality Coefficient 0.02 0.02 0.04 0.03 0.02 0.03 0.02 0.02 

Mean Squared Error decomposition:    
     

 

Bias proportion 2.0% 1.0% 0.1% 0.4% 0.1% 0.3% 4.0% 11.0% 

Variance proportion 0.8% 0.0% 0.0% 0.0% 4.0% 0.0% 2.6% 1.4% 

Covariance proportion 97.2% 99.0% 99.9% 99.5% 96.0% 99.7% 93.4% 87.6% 
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a) Global 

 
 

b) China 

 

c) USA 

 
 

d) EU(28) 

 
 

e) India 

 

f) Russia 

 
 

g) Japan 

 
 

h) ROW 

 
 

 

Figure 1.   In-sample CO2 Predictions: 1950-2017 
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We get consistently excellent in-sample predictions with a MAPE ranging from a 
minimum of 3.2% for worldwide CO2 emissions to a maximum of 7.9% for emissions 
from China. The percentage of projected values outside the confidence interval ranges 
from a minimum of 3% for the USA to a maximum of 7.5% for Japan. 

In turn, the U-statistic shows a very small value, varying in a band between 0.02 and 
0.04. This suggests that the predictions compare quite well with the observed values. 
Furthermore, the predictions are non-skewed and show a low variance, which suggests 
that they closely track the changes in the observed values. In fact, more than 93% of the 
prediction error in the six countries is non-systematic while for the ROW this component 
is 87.6%. 

Finally, the fact that the degree of persistence we estimate for worldwide CO2 
emissions corresponds to the exact convex combination of the seven individual results 
guarantees the consistency of the different forecasts. Total projections based on the 
aggregate results are always very close to the sum of the projections for each of the 
seven individual components. The difference is, on average, 0.5% in in-sample 
projections discussed here and about 1.5% in out-of-sample projections discussed below. 

 
 
5.   ARFIMA CO2 EMISSIONS FORECASTS AND THEIR IMPLICATIONS 

 

5.1.   The ARFIMA Forecasts 2018 – 2050 
 

Having established a good forecasting performance of the ARFIMA estimates, we 
use these estimates to forecast CO2 emissions until 2050. We present the detailed results 
in Figure 2 while in Table 4 we present summary results relative to 2010 reference levels 
(the detailed results will be provided upon request to the authors). 

We forecast worldwide CO2 emissions to reach 37,171Mt by 2050 after having 
reached a peak of 37,623Mt in 2034. The forecasted emission levels in 2030 and 2050 
are 12.4% and 11.1% above the 2010 reference level, respectively.  

From a national perspective, we can identify two groups of countries in terms of the 
intertemporal pattern of CO2 emissions forecasts into 2050. For the first group, 
emissions are always increasing or reach a peak later in the forecast horizon. This group 
includes China, India and the ROW, which account for 68.2% of the total emissions in 
2017. For the second group, projected emission decline throughout the forecast horizon. 
This group includes the USA, the EU (28), Russia, and Japan, and accounts for the 
remaining 31.8% of worldwide emissions. 

More specifically for the first group of countries, for China, we forecast CO2 
emissions to reach a peak in 2034 at 10,248 Mt. The forecasted levels of emissions in 
2030 and 2050 are 20.2% and 18.3% above the 2010 reference level, respectively. For 
the ROW the projected figures are similar although emissions show a permanently 
increasing trend. Specifically, the forecast levels of emissions in 2030 and 2050 are   
21.4% and 24.9% above the 2010 reference level, respectively.  
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a) Global 

 
 

b) China 

 

c) USA 

 

d) EU(28) 

 
 

e) India 

 

f) Russia 

 
 

g) Japan 

 
 

h) ROW 

 
 

 

Figure 2.   CO2 Emissions Forecasts for 2018 – 2050 
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Table 4.   CO2 Emissions Forecasts Relative to 2010 Reference Levels (%)  

 
Global China USA EU(28) India Russia Japan ROW 

2020 11.3 16.3 -7.1 -14.2 53.7 -6.1 -3.3 17.0 

2030 12.4 20.2 -9.8 -19.5 70.7 -10.7 -8.5 21.4 

2040 12.3 20.3 -12.3 -23.8 79.1 -14.9 -13.3 23.7 

2050 11.1 18.3 -14.7 -27.5 83.4 -18.8 -18.0 24.9 

 
 
In turn, we project emissions for India to always be above the 2010 reference levels 

and increasingly so. By 2030 and 2050, the flow of emissions is respectively 53.7% and 
83.4% above the 2010 level. Accordingly, India stands out as a country for which 
projected emissions show a sharply increasing pattern. 

As to the second group of countries, for the USA we project CO2 emissions to be  
9.8% and 14.7% below the 2010 emissions levels by 2030 and 2050. For Russia, 
emissions are projected to be 10.7% and 18.8% below the 2010 levels by 2030 and 2050, 
respectively while for Japan the projected emissions will be 8.5% and 18.0% below the 
2010 level. Finally, for the EU(28) the figures are 19.5% and 27.5% below 2010 level, 
respectively. Accordingly, the EU(28) stands out as a region showing a slightly more 
accelerated pattern of decarbonization. 

 
5.2.   The ARFIMA Forecasts and the IPCC Special Report 2018 Targets 
 
Under the IPCC targets, global CO2 emissions would have to decrease by 15,050 Mt 

or 45% of 2010 emissions by 2030 and a further 12,476 Mt, or a further 40% of 2010 
levels, between 2030 and 2050. Accordingly, the total target accumulated reduction by 
2050 corresponds to a reduction of 85% in emissions relative to 2010 levels.  

Of the greatest importance is the comparison of these IPCC policy targets with our 
ARFIMA CO2 emissions projections. Table 5 shows the policy effort required to meet 
the new IPCC targets and achieve carbon neutrality by 2050. The first column presents 
the total effort necessary to achieve the intermediate IPCC target for 2030 while the 
second column displays the total effort necessary by 2050 to achieve carbon neutrality. 
The difference between the ARFIMA forecasts and the IPCC figures in the first row, 
therefore, measures the additional/reduced effort implied by the ARFIMA forecasts to 
reach the IPCC targets. In Figure 3, we provided a panoramic view of the two relevant 
trajectories.  

Our results indicate that to meet the IPCC mid-term targets in 2030, it is necessary a 
worldwide policy effort that leads to a reduction of CO2 emissions of 57.4% relative to 
2010 levels. Of these, 12.4% corresponds to the extra effort over the basic 45% IPCC 
reduction target due to the inertia of the emissions system. To achieve carbon neutrality 
by 2050 will require a total reduction of CO2 emissions of 97.4% of 2010 levels.  
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Table 5.   Reductions in CO2 Emissions Relative to 2010 (%) 
  2030 2050 

IPCC (2018) targets -45.0 -85.0 

Policy effort based on ARFIMA forecasts   

Global -57.4 -97.4 
China -65.2 -105.2 
USA -35.2 -75.1 
EU(28) -25.5 -65.8 
India -115.7 -156.0 
Russia -34.3 -74.3 
Japan -36.5 -76.7 
ROW -71.4 -111.4 

 
These forecasts imply that the policy efforts required to achieve decarbonization are 

very large, substantially larger than indicated by the IPCC targets themselves. 
Furthermore, they are also frontloaded. In the next decade emissions need to decline by 
more than the two following decades. This frontloading clearly exceeds the frontloading 
already contemplated in the IPCC targets.  

Naturally, these aggregate results hide very different realities. For regions such as 
China, ROW, and India, the task is larger than these worldwide numbers indicate while 
for the remaining countries the opposite is true.  

For China, a policy effort that cuts CO2 emissions by 65.2% of 2010 levels by 2030 
is necessary to meet IPCC targets. By 2050, a reduction of emissions equivalent to  
105.2% of the 2010 emissions is required. For China, the policy effort in somewhat 
larger than the effort measured at the aggregate level and about equally as frontloaded. A 
similar situation both qualitatively and quantitatively applies to the ROW. This means 
policy efforts needed to achieve the IPCC goals in these two blocks are close to 
worldwide standards. 

The case of India, however, deserves a closer look as the policy efforts necessary to 
achieve the IPCC CO2 emissions targets are much more pronounced. By 2030, these 
policy efforts would have to lead to a reduction of 115.7% of 2010 levels while by 2050 
the reduction would have to be 156% of such levels. Therefore, the policy efforts for 
decarbonization in India are rather imposing. Furthermore, they are substantially more 
frontloaded than the worldwide average. 

On the other side of this divide are the USA, EU(28), Russia, and Japan, for which 
the inertia of the emissions system suggests that the policy efforts needed to promote the 
decarbonisation are lower than the IPCC goals themselves. In particular, for the EU(28) 
our results suggest that policy efforts leading to 25.5% and 65.8% reduction in emissions 
relative to 2010 levels would be needed by 2030 and 2050, respectively. Furthermore, 
such efforts are also substantially less frontloaded. For the remaining countries, the same 
qualitative patterns apply albeit requiring a slightly stronger policy effort. For USA, 
Russia and Japan, the policy efforts necessary to achieve the IPCC 2030 targets are just 
over one-third of the 2010 emissions: 35.2%, 34.3% and 36.5%, respectively. By 2050, 
they are about three-quarters of 2010 emissions: 75.1%, 74.3%, and 76.7%, respectively. 
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a) Global 

 

b) China 

c) USA d) EU(28) 

 
e) India f) Russia 

 
g) Japan 

 

h) ROW 

 

 

Figure 3.   CO2 Emissions: ARFIMA Projections versus IPCC Goals 
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6.   SUMMARY, CONCLUSIONS AND POLICY IMPLICATIONS 
 

This work uses an ARFIMA model to evaluate the degree of persistence of 
worldwide CO2 emissions. Our empirical results suggest that emissions, both worldwide 
and for each of the seven regions considered, are fractionally integrated processes. 
Accordingly, the different series show long-memory and the effects of shocks tend to 
dissipate at a slow hyperbolic rate. Our results also suggest that the emissions from the 
ROW exhibit the weakest degree of long-range dependence, while emissions from China 
and Russia have the strongest levels of persistence.  

The long-memory nature of the emissions data implies that any policy shock will 
have temporary effects albeit longer lasting than suggested in a traditional analysis of 
stationarity. The mean reversal property of our estimates, however, implies that the 
policy effort must be persistent to produce equally persistent effects. This is particularly 
relevant in the framework of the international strategies for achieving carbon neutrality 
in 2050 where it will be crucial to promote permanent changes in behavior. 

In terms of the CO2 emissions projections, our approach uses only the information 
included in the stochastic process underlying the baseline data, in a context in which the 
existing policies remain invariant. From a regional perspective, our projections suggest 
that emissions from China, India and the ROW show a growing pattern into the future. 
For China emissions will peak around 2034 while for India and the ROW emission will 
peak after the our forecast horizon. Conversely, for the remaining regions, the USA, the 
EU(28), Russia, and Japan, projections show a declining pattern of emissions. Of these, 
the EU (28) achieves the largest percentage reduction in its annual flow under our 
reference forecasts.  

Significantly, our results clearly suggest that the underlying inertia of the emissions 
systems is insufficient to generate a path of emissions consistent with the intermediate 
IPCC target for 2030 or with the goal of carbon neutrality by 2050. In fact, they suggest 
quite the opposite as we actually project in several cases CO2 emissions by 2030 and 
2050 increasingly above 2010 levels.  

We measure the policy efforts necessary as the difference between the reductions of 
CO2 emissions required to achieve the IPCC targets and the evolution of emissions as 
measured by the underling ARFIMA inertial projections. For worldwide emissions, the 
aggregate effort by 2050 is equivalent to 97.4% of 2010 emissions. This policy effort is 
frontloaded as about 60% of such efforts would have to occur before 2030. 

Our results suggest that in order to achieve such policy targets in the USA, EU(28), 
Russia, and Japan, which account for just about 40% of worldwide emissions, the policy 
efforts required are lower than the IPCC goals themselves. Specifically, our results 
suggest that by 2050, policy efforts would have to lead to reductions of 75.1%, 65.8%, 
76.7%, and 74.3% of 2010 levels. In addition, these policy efforts are clearly less 
frontloaded than the worldwide patterns as only around 45% of the policy efforts would 
have to occur before 2030. In the case of the EU(28), policy efforts required are less 
pronounced and less frontloaded than in the other three regions.  
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In the case of China, India and the ROW, which account for about 60% of 
worldwide emissions, additional deliberate policy efforts are necessary leading by 2050 
to reductions in emissions of 105.0%, 156.0% and 111.4%, of the 2010 levels, 
respectively. The case of India is to be highlighted as policy efforts are not only rather 
severe but also rather dramatically frontloaded as about 74% of the policy efforts would 
have to occur by 2030.  

Our results suggest that the policies toward decarbonization of the economy by 2050 
be tailored considering the specific characteristics of each one of the different regional 
components of worldwide CO2 emissions. Given the differences in the inertia of 
emissions in the different regions a one-size fits all approach may not be the best 
approach. More specifically, our results provide insights into each region's required 
contribution towards meeting the IPCC targets. In fact, the contribution of the four 
regions – the USA, the EU(28), Russia and Japan, whose emissions trajectories are 
decreasing represent 33.9% of worldwide emissions but are expected to contribute with 
only 20.0% of the emissions reductions necessary by 2030. The opposite is true for 
China, India, and ROW for whom meeting the IPCC targets by 2030 will mean a 
reduction of 28.9% and 10.3%, and 39.9% of total emissions, respectively while they 
represent 26.8%, 5.8% and 33.4% of emissions. In this sense, trading off emission 
reductions among these regions maybe an optimal strategy.  

Lastly, consider the fact that the economic and societal impacts of climate change - 
on productivity, water resources, transport, energy production and consumption, 
migration, tourism and leisure, infrastructure, food production capacity, well-being and 
public health, migration, biodiversity and even political stability - are still far from being 
fully identified and much less internalized into policy decision making [see Tol (2018)].  

Our results contribute to strengthening the need to define and implement transition, 
adaptation and mitigation policies climate and energy, consistent with the goal of carbon 
neutrality in 2050, fully aligned with both the goals of the Paris Agreement and the 
United Nations Sustainable Development Goals. Such policies are urgent, daunting and 
frontloaded. They cannot also be of a one-size-fits-all type across different regions of the 
world. In this sense, our work is a contribution to the ongoing debate on how different 
regions can or should contribute towards the common goals of achieving carbon 
neutrality by 2050 as postulated by the IPCC 2018 targets.  
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APPENDIX 
 

Table A1.   Worldwide CO2 Emissions Forecasts for 2018-2050 

Years 
Total co2 
emissions 

(forecasts - ft) 

Distançe to 
reference year      

(2010) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 36,990 10.6 975 2.6 35,387 38,594 

2019 37,141 11.1 1,243 3.3 35,096 39,186 

2020 37,214 11.3 1,502 4.0 34,743 39,684 

2021 37,255 11.4 1,752 4.7 34,374 40,136 

2022 37,295 11.5 2,045 5.5 33,931 40,660 

2023 37,338 11.6 2,368 6.3 33,442 41,233 

2024 37,381 11.8 2,706 7.2 32,930 41,832 

2025 37,423 11.9 3,049 8.1 32,408 42,437 

2026 37,463 12.0 3,390 9.0 31,886 43,039 

2027 37,499 12.1 3,727 9.9 31,369 43,629 

2028 37,531 12.2 4,057 10.8 30,857 44,204 

2029 37,558 12.3 4,380 11.7 30,353 44,763 

2030 37,581 12.4 4,696 12.5 29,857 45,305 

2031 37,599 12.4 5,004 13.3 29,368 45,829 

2032 37,612 12.5 5,304 14.1 28,887 46,336 

2033 37,620 12.5 5,597 14.9 28,413 46,827 

2034 37,623 12.5 5,884 15.6 27,945 47,301 

2035 37,622 12.5 6,164 16.4 27,483 47,761 

2036 37,617 12.5 6,438 17.1 27,028 48,206 

2037 37,607 12.4 6,706 17.8 26,577 48,637 

2038 37,593 12.4 6,968 18.5 26,132 49,054 

2039 37,576 12.4 7,225 19.2 25,692 49,459 

2040 37,554 12.3 7,477 19.9 25,257 49,852 

2041 37,530 12.2 7,724 20.6 24,826 50,234 

2042 37,502 12.1 7,966 21.2 24,399 50,604 

2043 37,470 12.0 8,204 21.9 23,976 50,964 

2044 37,436 11.9 8,437 22.5 23,557 51,314 

2045 37,398 11.8 8,667 23.2 23,142 51,654 

2046 37,358 11.7 8,893 23.8 22,731 51,985 

2047 37,315 11.6 9,114 24.4 22,323 52,307 

2048 37,270 11.4 9,332 25.0 21,919 52,620 

2049 37,222 11.3 9,547 25.6 21,518 52,925 

2050 37,171 11.1 9,758 26.3 21,121 53,222 
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Table A2.   China CO2 Emissions Forecasts for 2018-2050 

Years 
Total co2 
emissions 

(forecasts - ft) 

Distançe to 
reference year 

(2010) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 9 781 15.1 436 4.5 9 064 10 497 

2019 9 833 15.7 576 5.9 8 886 10 781 

2020 9 886 16.3 712 7.2 8 715 11 056 

2021 9 935 16.9 843 8.5 8 548 11 322 

2022 9 982 17.4 971 9.7 8 384 11 579 

2023 10 024 17.9 1 096 10.9 8 222 11 826 

2024 10 063 18.4 1 217 12.1 8 061 12 065 

2025 10 097 18.8 1 336 13.2 7 900 12 294 

2026 10 128 19.1 1 452 14.3 7 740 12 515 

2027 10 155 19.5 1 565 15.4 7 580 12 729 

2028 10 178 19.7 1 676 16.5 7 421 12 934 

2029 10 197 20.0 1 784 17.5 7 262 13 132 

2030 10 213 20.2 1 891 18.5 7 104 13 323 

2031 10 227 20.3 1 995 19.5 6 946 13 507 

2032 10 237 20.4 2 096 20.5 6 788 13 685 

2033 10 244 20.5 2 196 21.4 6 631 13 856 

2034 10 248 20.6 2 294 22.4 6 474 14 022 

2035 10 250 20.6 2 390 23.3 6 318 14 182 

2036 10 249 20.6 2 484 24.2 6 163 14 336 

2037 10 247 20.5 2 577 25.1 6 008 14 485 

2038 10 242 20.5 2 667 26.0 5 855 14 629 

2039 10 235 20.4 2 756 26.9 5 702 14 768 

2040 10 226 20.3 2 843 27.8 5 549 14 902 

2041 10 215 20.2 2 929 28.7 5 398 15 032 

2042 10 203 20.0 3 013 29.5 5 247 15 158 

2043 10 189 19.9 3 095 30.4 5 098 15 280 

2044 10 173 19.7 3 176 31.2 4 949 15 397 

2045 10 156 19.5 3 255 32.1 4 802 15 511 

2046 10 138 19.3 3 333 32.9 4 655 15 621 

2047 10 118 19.0 3 410 33.7 4 509 15 727 

2048 10 098 18.8 3 485 34.5 4 365 15 830 

2049 10 076 18.5 3 559 35.3 4 221 15 930 

2050 10 053 18.3 3 632 36.1 4 079 16 027 
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Table A3.   USA CO2 Emissions Forecasts for 2018-2050 

Years 
Total co2 
emissions 

(forecasts - ft) 

Distançe to 
reference year 

(2010) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 5 336 -6.4 284 5.3 4 868 5 803 

2019 5 316 -6.8 346 6.5 4 746 5 885 

2020 5 298 -7.1 404 7.6 4 634 5 962 

2021 5 280 -7.4 458 8.7 4 527 6 033 

2022 5 264 -7.7 509 9.7 4 426 6 101 

2023 5 248 -8.0 558 10.6 4 330 6 166 

2024 5 232 -8.2 605 11.6 4 237 6 227 

2025 5 217 -8.5 650 12.5 4 147 6 286 

2026 5 202 -8.8 694 13.3 4 061 6 343 

2027 5 187 -9.0 736 14.2 3 976 6 398 

2028 5 173 -9.3 777 15.0 3 894 6 451 

2029 5 158 -9.5 817 15.8 3 814 6 502 

2030 5 144 -9.8 856 16.6 3 736 6 552 

2031 5 129 -10.0 894 17.4 3 660 6 599 

2032 5 115 -10.3 931 18.2 3 585 6 646 

2033 5 101 -10.5 967 18.9 3 511 6 691 

2034 5 087 -10.8 1 002 19.7 3 439 6 735 

2035 5 073 -11.0 1 036 20.4 3 368 6 777 

2036 5 059 -11.3 1 070 21.1 3 299 6 818 

2037 5 045 -11.5 1 103 21.9 3 231 6 859 

2038 5 030 -11.8 1 135 22.6 3 163 6 898 

2039 5 016 -12.0 1 167 23.3 3 097 6 936 

2040 5 002 -12.3 1 198 23.9 3 032 6 973 

2041 4 988 -12.5 1 229 24.6 2 967 7 009 

2042 4 974 -12.8 1 259 25.3 2 904 7 044 

2043 4 960 -13.0 1 288 26.0 2 841 7 078 

2044 4 946 -13.2 1 317 26.6 2 780 7 112 

2045 4 932 -13.5 1 345 27.3 2 719 7 145 

2046 4 917 -13.7 1 373 27.9 2 659 7 176 

2047 4 903 -14.0 1 401 28.6 2 599 7 207 

2048 4 889 -14.2 1 428 29.2 2 541 7 238 

2049 4 875 -14.5 1 454 29.8 2 483 7 267 

2050 4 861 -14.7 1 481 30.5 2 425 7 296 
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Table A4.   EU(28) CO2 Emissions Forecasts for 2018-2050 

Years 
Total co2 
emissions 

(forecasts - ft) 

Distançe to 
reference year 

(2010) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 3 441 -12.9 228 6.6 3 065 3 816 

2019 3 414 -13.6 281 8.2 2 952 3 876 

2020 3 389 -14.2 330 9.7 2 846 3 931 

2021 3 365 -14.8 376 11.2 2 746 3 983 

2022 3 341 -15.4 420 12.6 2 650 4 033 

2023 3 319 -16.0 463 13.9 2 558 4 080 

2024 3 298 -16.5 504 15.3 2 469 4 126 

2025 3 277 -17.1 543 16.6 2 384 4 170 

2026 3 256 -17.6 581 17.8 2 301 4 212 

2027 3 237 -18.1 618 19.1 2 220 4 253 

2028 3 217 -18.6 654 20.3 2 142 4 292 

2029 3 198 -19.1 688 21.5 2 066 4 331 

2030 3 180 -19.5 722 22.7 1 992 4 368 

2031 3 162 -20.0 755 23.9 1 920 4 404 

2032 3 144 -20.4 787 25.0 1 849 4 439 

2033 3 127 -20.9 818 26.2 1 780 4 473 

2034 3 110 -21.3 849 27.3 1 713 4 506 

2035 3 093 -21.7 879 28.4 1 647 4 539 

2036 3 076 -22.1 908 29.5 1 582 4 570 

2037 3 060 -22.6 937 30.6 1 519 4 601 

2038 3 044 -23.0 965 31.7 1 457 4 631 

2039 3 028 -23.4 992 32.8 1 396 4 660 

2040 3 012 -23.8 1 019 33.8 1 336 4 688 

2041 2 997 -24.2 1 045 34.9 1 277 4 716 

2042 2 981 -24.5 1 071 35.9 1 220 4 743 

2043 2 966 -24.9 1 096 37.0 1 163 4 769 

2044 2 951 -25.3 1 121 38.0 1 107 4 795 

2045 2 936 -25.7 1 145 39.0 1 052 4 820 

2046 2 922 -26.1 1 169 40.0 998 4 845 

2047 2 907 -26.4 1 193 41.0 945 4 869 

2048 2 893 -26.8 1 216 42.0 893 4 892 

2049 2 878 -27.2 1 238 43.0 841 4 915 

2050 2 864 -27.5 1 261 44.0 791 4 938 
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Table A5.   India CO2 Emissions Forecasts for 2018-2050 

Years 
Total co2 
emissions 

(forecasts - ft) 

Distançe to 
reference year 

(2010) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 2 520 48.2 77 3.0 2 393 2 646 

2019 2 569 51.1 108 4.2 2 391 2 747 

2020 2 613 53.7 139 5.3 2 385 2 841 

2021 2 654 56.1 167 6.3 2 378 2 929 

2022 2 691 58.3 195 7.3 2 370 3 012 

2023 2 725 60.3 222 8.1 2 360 3 089 

2024 2 756 62.1 247 9.0 2 349 3 162 

2025 2 785 63.8 272 9.8 2 337 3 232 

2026 2 811 65.4 296 10.5 2 324 3 299 

2027 2 836 66.8 320 11.3 2 310 3 362 

2028 2 859 68.2 343 12.0 2 296 3 423 

2029 2 881 69.5 365 12.7 2 280 3 482 

2030 2 901 70.7 387 13.3 2 265 3 538 

2031 2 920 71.8 409 14.0 2 248 3 593 

2032 2 938 72.8 430 14.6 2 231 3 645 

2033 2 955 73.8 450 15.2 2 214 3 696 

2034 2 970 74.7 471 15.8 2 196 3 745 

2035 2 985 75.6 491 16.4 2 178 3 792 

2036 2 999 76.4 510 17.0 2 159 3 838 

2037 3 012 77.2 530 17.6 2 140 3 883 

2038 3 024 77.9 549 18.1 2 121 3 926 

2039 3 035 78.5 567 18.7 2 102 3 968 

2040 3 046 79.1 586 19.2 2 082 4 009 

2041 3 055 79.7 604 19.8 2 062 4 049 

2042 3 065 80.3 622 20.3 2 042 4 087 

2043 3 073 80.8 639 20.8 2 022 4 125 

2044 3 081 81.3 657 21.3 2 001 4 162 

2045 3 089 81.7 674 21.8 1 980 4 197 

2046 3 096 82.1 691 22.3 1 959 4 232 

2047 3 102 82.5 707 22.8 1 938 4 266 

2048 3 108 82.8 724 23.3 1 917 4 299 

2049 3 114 83.2 740 23.8 1 896 4 331 

2050 3 119 83.4 756 24.2 1 875 4 363 
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Table A6.   Russia CO2 Emissions Forecasts for 2018-2050 

Years 
Total co2 
emissions 

(forecasts - ft) 

Distançe to 
reference year 

(2010) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 1 572 -5.2 119 7.6 1 375 1 768 

2019 1 551 -6.5 166 10.7 1 278 1 824 

2020 1 556 -6.1 210 13.5 1 210 1 902 

2021 1 544 -6.9 253 16.4 1 128 1 960 

2022 1 524 -8.1 294 19.3 1 040 2 008 

2023 1 528 -7.8 334 21.8 979 2 077 

2024 1 523 -8.1 361 23.7 930 2 117 

2025 1 517 -8.5 385 25.3 884 2 149 

2026 1 510 -8.9 406 26.9 842 2 178 

2027 1 503 -9.3 426 28.4 802 2 204 

2028 1 496 -9.8 445 29.8 763 2 228 

2029 1 488 -10.2 464 31.2 725 2 251 

2030 1 481 -10.7 481 32.5 689 2 273 

2031 1 474 -11.1 498 33.8 654 2 294 

2032 1 466 -11.5 515 35.1 620 2 313 

2033 1 459 -12.0 531 36.4 586 2 332 

2034 1 452 -12.4 546 37.6 553 2 351 

2035 1 445 -12.8 562 38.9 522 2 369 

2036 1 438 -13.2 576 40.1 490 2 386 

2037 1 431 -13.7 591 41.3 460 2 403 

2038 1 424 -14.1 605 42.4 430 2 419 

2039 1 417 -14.5 618 43.6 401 2 434 

2040 1 411 -14.9 632 44.8 372 2 449 

2041 1 404 -15.3 645 45.9 344 2 464 

2042 1 397 -15.7 657 47.0 316 2 478 

2043 1 391 -16.1 670 48.2 289 2 492 

2044 1 384 -16.5 682 49.3 263 2 506 

2045 1 378 -16.9 694 50.4 237 2 519 

2046 1 371 -17.3 705 51.4 211 2 531 

2047 1 365 -17.6 717 52.5 186 2 544 

2048 1 359 -18.0 728 53.6 162 2 556 

2049 1 353 -18.4 739 54.6 138 2 568 

2050 1 346 -18.8 749 55.7 114 2 579 

 
 



JOSÉ M. BELBUTE AND ALFREDO M. PEREIRA 24

Table A7.   Japan CO2 Emissions Forecasts for 2018-2050 

Years 
Total co2 
emissions 

(forecasts - ft) 

Distançe to 
reference year 

(2010) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 1 188 -2.0 83 6.9 1 052 1 323 

2019 1 180 -2.6 102 8.6 1 012 1 347 

2020 1 172 -3.3 120 10.3 974 1 370 

2021 1 165 -3.8 138 11.8 939 1 391 

2022 1 158 -4.4 154 13.3 905 1 412 

2023 1 152 -4.9 170 14.7 872 1 431 

2024 1 146 -5.4 185 16.2 841 1 450 

2025 1 139 -6.0 200 17.5 811 1 468 

2026 1 133 -6.5 214 18.9 781 1 485 

2027 1 127 -7.0 228 20.2 753 1 501 

2028 1 121 -7.5 241 21.5 725 1 517 

2029 1 115 -8.0 254 22.7 698 1 532 

2030 1 109 -8.5 266 24.0 671 1 547 

2031 1 103 -8.9 278 25.2 645 1 561 

2032 1 097 -9.4 290 26.4 620 1 574 

2033 1 091 -9.9 302 27.6 595 1 587 

2034 1 085 -10.4 313 28.8 571 1 600 

2035 1 080 -10.9 324 30.0 547 1 612 

2036 1 074 -11.4 334 31.1 524 1 624 

2037 1 068 -11.9 345 32.3 501 1 635 

2038 1 062 -12.3 355 33.4 478 1 646 

2039 1 056 -12.8 365 34.5 456 1 656 

2040 1 050 -13.3 374 35.6 435 1 666 

2041 1 045 -13.8 384 36.7 413 1 676 

2042 1 039 -14.3 393 37.8 392 1 685 

2043 1 033 -14.7 402 38.9 372 1 695 

2044 1 027 -15.2 411 40.0 351 1 703 

2045 1 022 -15.7 420 41.1 332 1 712 

2046 1 016 -16.1 428 42.1 312 1 720 

2047 1 010 -16.6 436 43.2 293 1 728 

2048 1 005 -17.1 444 44.2 274 1 736 

2049 999 -17.5 452 45.3 255 1 743 

2050 993 -18.0 460 46.3 236 1 750 
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Table A8.   ROW CO2 Emissions Forecasts for 2018-2050 

Years 
Total co2 
emissions 

(forecasts - ft) 

Distançe to 
reference year 

(2010) 

RMSE Confidence interval (95%) 

MtCO2 
rmset/ft                                                   

(%) 
Lower limit Upper limit 

2018 12 408 15.7 435 3.5 11 692 13 124 

2019 12 476 16.4 581 4.7 11 520 13 433 

2020 12 543 17.0 715 5.7 11 367 13 718 

2021 12 605 17.5 838 6.6 11 227 13 983 

2022 12 663 18.1 953 7.5 11 096 14 230 

2023 12 717 18.6 1 061 8.3 10 972 14 462 

2024 12 768 19.1 1 164 9.1 10 853 14 683 

2025 12 816 19.5 1 263 9.9 10 739 14 893 

2026 12 860 19.9 1 358 10.6 10 627 15 093 

2027 12 902 20.3 1 449 11.2 10 518 15 286 

2028 12 941 20.7 1 538 11.9 10 412 15 471 

2029 12 978 21.0 1 624 12.5 10 308 15 649 

2030 13 013 21.4 1 707 13.1 10 205 15 821 

2031 13 046 21.7 1 789 13.7 10 104 15 988 

2032 13 077 21.9 1 868 14.3 10 004 16 149 

2033 13 105 22.2 1 946 14.8 9 905 16 306 

2034 13 133 22.5 2 022 15.4 9 807 16 458 

2035 13 158 22.7 2 096 15.9 9 711 16 606 

2036 13 182 22.9 2 169 16.5 9 615 16 749 

2037 13 205 23.1 2 240 17.0 9 520 16 890 

2038 13 226 23.3 2 310 17.5 9 426 17 026 

2039 13 246 23.5 2 379 18.0 9 333 17 159 

2040 13 265 23.7 2 447 18.4 9 240 17 289 

2041 13 282 23.9 2 513 18.9 9 148 17 416 

2042 13 298 24.0 2 579 19.4 9 057 17 540 

2043 13 314 24.2 2 643 19.9 8 966 17 661 

2044 13 328 24.3 2 707 20.3 8 876 17 780 

2045 13 341 24.4 2 769 20.8 8 787 17 896 

2046 13 353 24.5 2 831 21.2 8 697 18 010 

2047 13 365 24.6 2 891 21.6 8 609 18 121 

2048 13 375 24.7 2 951 22.1 8 521 18 230 

2049 13 385 24.8 3 010 22.5 8 433 18 337 

2050 13 394 24.9 3 069 22.9 8 346 18 442 

 
 



JOSÉ M. BELBUTE AND ALFREDO M. PEREIRA 26

REFERENCES 

 
Apergis, N. and C. Tsoumas (2012), “Long Memory and Disaggregated Energy 

Consumption: Evidence from Fossil Fuels, Coal and Electricity Retail in the US,” 
Energy Economics, 34, 1082-87. 

_____ (2011), “Integration Properties of Disaggregated Solar, Geothermal and Biomass 
Energy Consumption in the US,” Energy Policy, 39, 5474-5479. 

Bai, J. and P. Perron (2003), “Computation and Analysis of Multiple Structural Change 
Models,” Journal of Applied Econometrics, 18, 1-22.  

Baillie, R. (1996), “Long-Memory Processes and Fractional Integration in Econometrics,” 
Journal of Econometrics, 73, 5-59. 

Barassi, M., M. Cole, and R. Elliott (2011), “The Stochastic Convergence of 
CO2Emissions: A Long Memory Approach,” Environmental Resource Economics, 
49, 367-385. 

Barros, C., Gil-Alana and F. de Gracia (2016), “Stationarity and Long Range 
Dependence of Carbon Dioxide Emissions: Evidence for Disaggregated Data,” 
Environmental Resource Economics, 63, 45-56. 

Belbute, J. and A. Pereira (2017), “Do Global CO2 Emissions from Fossil-Fuel 
Consumption Exhibit Long Memory? A Fractional Integration Analysis,” Applied 
Economics, 49(40), 4005-4070. 

_____ (2015), “An Alternative Reference Scenario for Global CO2 Emissions from Fuel 
Consumption: An ARFIMA Approach,” Economics Letters, 135, 108-111. 

Beran, J. (1994), Statistics for Long-Memory Process, Boca Raton, Chapman and 
Hall/CRC.  

Boden, T.A., G. Marland, and R.J. Andres (2017), “Global, Regional, and National 
Fossil-Fuel CO2 Emissions,” Carbon Dioxide Information Analysis Center, Oak 
Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA.  

Bollerslev, T. and O. Mikkelsen (1996), “Modeling and Pricing Long Memory in Stock 
Market Volatility,” Journal of Econometrics, 73, 151-184. 

BP (2018), Statistical Review of World Energy. Available at: http://www.bp.com/en/ 
global/corporate/energy-economics.html 

Diebold, F.X. and G.D. Rudebusch (1991), “On the Power of Dickey-Fuller Tests 
Against Fractional Alternatives,” Economics Letters, 35, 155-160. 

Gil-Alana, L., J. Cunado and R. Gupta (2015), “Persistence, Mean-Reversion, and Non-
linearities in CO2 Emissions: The Cases of China, India, UK and US,” University of 
Pretoria Department of Economics Working Paper Series 2015-28. 

Global Carbon Atlas (2019), “Global Carbon Project,” http://www.globalcarbonatlas.org 
Granger, C. (1981), “Some Properties of Time Series Data and their Use in Econometric 

Model Specification,” Journal of Econometrics, 16, 121-130. 
Granger, C. (1980), “Long Memory Relationships and the Aggregation of Dynamic 

Models,” Journal of Econometrics, 14, 227-238. 
Granger C. and R. Joyeux (1980), “An Introduction to Long Memory Time Series and 



ARFIMA REFERENCE FORECASTS FOR WORLDWIDE CO2 EMISSIONS 27

Fractional Differencing,” Journal of Time Series Analysis, 1, 15-29. 
Hassler, U., P. Rodrigues and A. Rubia (2016), “Quantile Regression for Long Memory 

Testing: A Case of Realized Volatility,” Journal of Financial Econometrics, 14(4), 
693-724. 

IPCC (2018), “Special Report on Global Warming of 1.5 °C (SR15),” Intergovernmental 
Panel on Climate Change Annual Report, UNEP. 

_____ (2014), “Climate Change 2014: Synthesis Report,” Contribution of Working 
Groups I, II and III to R.K. Pachauri and L.A. Meyer (Eds.), Fifth Assessment Report 
of the Intergovernmental Panel on Climate Change, pp.151, IPCC, Geneva, 
Switzerland. 

Lo, A. (1991), “Long Term Memory in Stock Market Prices,” Econometrica, 59, 1279-
1313. 

Markandaya, A. (2019), “The Role of Natural Capital in Meeting the SDGs,” paper 
presented at the 24th Annual Conference of the European Association of 
Environmental Economists in Manchester, UK.  

Palma, W. (2007), Long-Memory Time Series: Theory and Methods, Wiley Series in 
Probability and Statistics. 

Sowell, F. (1992a), “Modeling Long-Run Behavior with the Fractional ARIMA Model,” 
Journal of Monetary Economics, 29, 277-302. 

Sowell F. (1992b), “Maximum Likelihood Estimation of Stationary Univariate 
Fractionally Integrated Time Series Models,” Journal of Econometrics, 53, 165-188. 

Tol, R. (2018), “The Economic Impacts of Climate Change,” Review of Environmental 
Economics and Policy, 12(1), 4-25. 

UNFCCC (2018), “National Inventory Submission,” United Nations Framework 
Convention on Climate Change.  

Zerbo, E. and O. Darné (2019), “On the Stationarity of CO2 Emissions in OECD and 
BRICS Countries: A Sequential Testing Approach,” Energy Economics, 83(C),   
319-332. 

 
 
 
 
 
 
 
 
 
 
Mailing Address: José M. Belbute, University of Évora, Department of Economics, Largo dos 
Colegiais, 2, 7000-803, Évora –Portugal, E-mail: jbelbute@uevora.pt. 
 

Received July 11, 2020, Revised June 21, 2021, Accepted June 30, 2021. 


