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Small firms are qualitatively different than large firms with respect to technology 

acquisition. As such, liberalization of technology flows in newly industrialized nations may 

have two potential effects, possibly felt differentially by small firms and large firms. First, 

technology flows may replace domestic research with cheaper imported foreign research. 

Second, they may combine with domestic research to improve local economic growth. This 

paper uses a unique firm-level dataset, modelling the choice between R&D expenditures and 

technology licensing behaviour in Brazil, explicitly considering corner solutions. Extending 

the results found elsewhere in the literature, econometric estimation of simultaneous input 

demand for capital, labor and both types of technology acquisition reveals that while very 

small firms see technology licensing and R&D as contemporaneous substitutes, firms of 

moderate to large size treat them as complements. Each firm’s licensing experience also 

plays a key role in the decision. 
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1.  INTRODUCTION 
 

The primary question that this paper addresses is whether R&D and technology 
licensing are substitutes or complements in production, with the related question of 
whether licensing in one period encourages subsequent technological dependence (more 
licensing in the future, i.e. inter-temporal complementarity between R&D and licensing) 
or independence (less future licensing or even R&D instead, i.e., inter-temporal 
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substitutability). Since the answer to that question clearly depends upon the size of the 
firm, this analysis uses a firm-level dataset to clarify and extend the existing literature. 

The question of R&D/licensing complementarity is critical for all firms deciding on 
a method for technology acquisition, and is commonly referred to as the “insourcing 
versus outsourcing” debate and is an important public policy issue for less developed 
nations in particular, who express concern about technological dependence and capital 
outflows. Since 1990, traditionally staunch supporters of controlled technology imports 
like Brazil and India have reversed course. After decades of tight license restrictions 
designed to foster domestic R&D, a combination of international pressure for open 
markets and growing dissatisfaction with low rates of technological change (Estache, 
1990) has led to a flood of legislative changes easing inflows of foreign technology. 

Beginning in 1962, any contract in Brazil concerning a piece of intellectual property, 
whether of foreign or domestic origin, was required to have a government license 
(Johnson, 2002). Concerns in the 1970’s about excessive payments abroad led to stricter 
legislation about technology licensing, including laws dictating remuneration in 
accordance with instructions by the Central Bank and Instituto Nacional da Propriedade 
Industrial (INPI). By 1975, a maze of contract guidelines existed, including rules for 
ceilings on both upfront and royalty payments. Contracts could not require the purchase 
of raw materials or components from the licensor, could not limit or hinder the research 
and technological development policy or activities of the licensee, and passed the rights 
to all improvements introduced by the user to the licensee. All of these requirements 
were aimed at fostering technological independence and domestic R&D capability (or to 
discourage cheating on the dictated payment ceilings). 

Starting in 1983, the policy stance changed, and the Brazilian government began to 
see for itself a role as facilitator of technology flows, with INPI promoting domestic 
transfers of technology, and other legislation promoting domestic innovation and R&D. 
By 1988, revitalized movements were also focused on the liberalization of international 
technology flows, with initial efforts aimed mainly at streamlining the application 
process required for a contract's approval. By 1990, tax concessions were granted for 
payments for foreign technology, and forty PDTI's (Programas de Desenvolvimento 
Tecnologico Industrial, agencies designed to foster technology flows between industries 
and between regions) had been instituted. In 1993, legislation restricted INPI to the 
formal examination of contracts with no power to refuse licenses, stating specifically 
that the recording of contracts must not constitute an obstacle to the access of the 
national industry to the technology and R&D sources existing in Brazil and abroad. In 
fact, INPI has a new mandate to render support services to Brazilian firms interested in 
the acquisition of new technology, foreign or domestic. 

It is obviously important to evaluate the potential reactions of domestic R&D to 
these policy changes, and empirical evidence on the issue indicates that R&D and 
technology licensing can be used as complements. Industry-level studies for India 
(Katrak 1985; Siddharthan, 1988; and Deolalikar and Evenson, 1989 for example), 
Canada (Mohnen and Lepine, 1991), and foreign branches of American firms 
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(Blomstrom et al., 1994) show that industries which perform more of their own R&D 
also license more technology. However, it is unclear that this evidence points to much 
more than a distinction between those sectors active in technology acquisition and other 
less active sectors. 

Firm-level data reveal an important set of issues for consideration during technology 
flow liberalization. Braga and Willmore (1991) confirmed that Brazilian firms which 
license technology were more likely to also have an R&D unit, but Dahab's survey 
(1992) found that small Brazilian firms tended not only to perform less R&D but also to 
use it differently than large firms. Small firms in her sample used licensed technology 
for imitation and production rather than as inspiration for future innovations. There is 
also evidence of a “lock-in” effect to foreign technology, a result one can infer from the 
Brazilian survey data of Christensen and Rocha (1988), where the fixed costs of initial 
adoption are high enough to preclude switching to technologies with lower marginal 
costs later. Executives of chemical firms ranked the attributes of available foreign and 
domestic technology, showing a substantial preference for domestic sources which are 
more suited to the needs of the firm, but also revealed that most firms used foreign 
technology in spite of their current preferences, due to purchase choices made long ago. 

To incorporate the issues of firm size and history with licensed technology, this work 
builds upon Fikkert (1994), who estimated simultaneous demand functions for R&D and 
technology purchases (licensing) using Indian firm-level data from the 1970’s. His 
analysis is innovative in that it makes use of firm-level data, which traditionally have 
many observations with corner solutions (i.e., R&D and /or technology licensing of zero 
by a given firm), a problem which aggregated industry data do not share. Interestingly, 
his results partially contradict the industry-level consensus, declaring R&D and 
technology licensing to be substitutes, but with increases in licensing exercising very 
small dampening effects on domestic R&D. In fact, the spillover effects of foreign R&D 
overwhelm the substitution effect, so his conclusion advocates an open technology 
policy. He also found evidence that firms with histories of direct foreign investment 
have greater access to (i.e., lower costs of) foreign technology, perhaps due to better 
access to financing or experience still present in the firm. 

The following section describes the unique new dataset gathered for this research, 
and the third section outlines a microeconomic model created to explain the data, a 
model which extends Fikkert's work through the use of Kuhn-Tucker conditions for 
corner solutions and four simultaneous input choice variables. The fourth section 
presents results of the model's estimation and interpretation before the conclusions are 
summarized in the final section. 
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2.  DATA  
 

2.1.  Sample Construction 
 
With the co-operation of the Instituto Nacional da Propriedade Industrial (INPI) and 

the Ministério da Fazenda (MF), a unique dataset for the study of Brazilian firm-level 
activity in R&D and technology licensing was compiled for this research. While tax 
records are confidential, INPI agreed to match their records of technology (the DIRTEC 
dataset) contracts with firm-level tax records from MF (the CADEC dataset). 
Unfortunately, access was granted to only a small corner of CADEC, and retrieval of 
variables was done by hand. Therefore, a sampling strategy ensures representation of a) 
firms with a history of technology licensing and b) firms of different sizes, although the 
vast majority of firms in the general population do not have a history of licensing.  

First, a random sample of firms from the DIRTEC list was constructed (roughly 
every sixth firm listed from the initial list of over 5,900 firms) and all 1988-90 CADEC 
documents were scanned for their data. Since many licensee firms have not survived the 
interval since their license, only 443 firms with license histories were uncovered by this 
sample in the 1988-90 period. It is assumed that no bias in firm size was introduced into 
the sample by this selection process, and that the firms from the DIRTEC list located in 
CADEC reflect the underlying distribution of CADEC firms in every way (except for 
their known licensing history), particularly in size. While survivor bias would jeopardize 
the results, we know of no way to test whether it is a problem here. 

In addition, a random sample from the 1990 CADEC database stratified by liquid 
receipts as an indicator of size was added. Thirty-four firms were randomly selected 
from each of eight ranges, but since most small firms in 1990 were not in the CADEC 
set in 1988, additional groups of 34 firms for the two smallest categories in 1988 were 
chosen and traced forward to 1990 wherever possible. The goal was to ensure 
representation of small firms in all years, and since small firms with three years of data 
in the CADEC database were rare, selection included other small firms to augment the 
sample. This random sample stratified by size was then properly weighted to reflect the 
true underlying distribution of the CADEC database firms which, as a tax database, 
consists of larger firms in the economy.  

The sample database therefore has 1,877 observations, incorporating data for 783 
firms (including 340 with no history of technology licensing) in one or more years. As 
Table 1 indicates, even the combined sample has a sparse collection of firms from firms 
performing R&D or licensing. Without the subsample based on licensing history, all 
further analysis would be crippled. The combined weighted sample represents the size 
distribution of firms in the CADEC database, but has proportionately many more firms 
with a licensing history. By construction, all sizes of firm have an equally inflated 
probability of licensing history in the sample, so estimation results are driven by the 
relationships between size, history and input choices, and not by sample selection.  

The sample spans a wide variety of firms covering fifteen broad industries (primary, 
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electrical, chemical, drugs/health, transport, metals, instruments/office equipment, other 
machinery, food, textiles, rubber/plastics, stone/glass, wood/paper, other manufactures 
and miscellaneous/services), but disaggregation is limited by the information provided 
by CADEC. Thus, definitions are determined by primary activity of the firm, as 
determined by Brazil’s MF, with one-quarter drawn from unknown, miscellaneous, 

 
 

Table 1.  Probabilities of a Sample Firm Licensing and R&D 

 Licensing R&D Both  

Small firm 0.009 0.018 0.000  
Medium firm 0.029 0.011 0.000  

Large firm 0.071 0.063 0.012 
Sample average  0.043 0.035 0.005 

 
 
service, or multiple-industry classifications. Estimations below are presented for the full 
sample and for the three-quarters of the sample for which manufacturing sectors can be 
identified. 

If there is measurement error in the technology payment and R&D expenditure 
variables, technology payments can be expected to understate actual transaction value, 
while R&D expenditures will be overstated. Since both can be deducted for tax purposes, 
firms would presumably report as high a value as was credible or legal. However, 
technology payments were regulated closely by the Central Bank, leaving no room for 
overstatement for tax purposes. They may even be understated if side payments were 
required between firms to procure technology which could not be purchased at 
state-regulated prices. R&D expenditures faced no such limit, and so can be expected (if 
anything) to overstate rather than understate.   

Technology spillovers, or the knowledge one firm receives from research performed 
by another firm, have become an accepted part of the literature on technology (see 
Evenson and Johnson, 1997; Bernstein 1995; Eaton and Kortum, 1994; Fikkert 1994; 
Mohnen and Lepine, 1991; Griliches, 1990). Measurement of disembodied spillovers 
(pure knowledge or research, where no financial transaction occurs) raises several 
difficult issues, including the degree of relevance which foreign R&D has for Brazilian 
production. However, this paper leaves the exploration of that issue to Johnson (2002), 
and simply considers the total possible spillover pool as the sum of R&D performed in 
the industry in France, Germany, Japan, the United Kingdom and the United States. 
Averages of R&D over the three years preceding the observation year were used to 
avoid reporting problems in the published series and to allow time for technological 
spillovers to be felt in Brazil. Longer lags may be appropriate, but these data are 
adequate proxies due to the relatively small annual changes in R&D series. 
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2.2.  Summary Statistics for Key Variables 
 
Descriptive statistics for the main variables are presented in Table 2. All variables 

have been converted to constant September 1986 currency units (using the ‘Indice de 
precos ao consumidor’ for September of each year to approximate the middle of the 
fiscal year). Interest rates are from the International Financial Statistics Yearbook and 
wage data by industry are from annual household surveys (Pesquisas Nacional de 
Amostra de Domicilias). 

Technology purchases (T) and R&D expenditures (R) are directly from CADEC tax 
forms. Labor (L) is the implicit hours of work hired, found as labor expenditures divided 
by the average monthly salary in the industry. Capital (K) is a residual measure, found as 
all non-labor, non-R&D, non-license expenditures divided by the annual interest rate 
(the price or opportunity cost of those expenditures). It broadly represents the physical 
quantity of inputs other than labor and technology obtained by the firm. Firm size (Z) is 
capital stock from tax forms. Licensing history (M) is the number of technology licenses 
signed by the firm between 1962 and 1987. The technology pool (P) is the number of 
technology licenses issued in the industry during the preceding five years, excluding 
those signed with the observation firm. The R&D spillover pool (S) is measured as R&D 
expenditures (reported by the Organisation for Economic Cooperation and Development 
in millions of constant 1990 US dollars), as performed by France, Germany, Japan, UK, 
and US. Since not all research performed elsewhere is relevant to the Brazilian industry, 
we followed Johnson and Evenson (2000) in measuring the share of patents from those 
source nations protected in Brazil, by industry, and attributed that protection share to 
research expenditures during the preceding five years. Training (N) is the share of total 
labor expenditures spent on training, as recorded by CADEC tax forms.  

 

 
Table 2.  Summary Statistics for Variables 

Variable Mean Std. Dev. Minimum Maximum Freq of 
zeroes 

T (Tech purchases) 667 1.12 × 10  0.00 4.23 × 105 1,729 

R (R&D spending) 1.90 × 10  4.42 × 10  0.00 1.81 × 10  1,781 

L (Labor hours) 8.22 × 10  3.43 × 10  0.31 7.84 × 10  0 

K (Physical capital and other 

inputs purchased) 
167 4.93 × 10  

3.06

× 10   
2.13 × 10  0 

Z (Size, capital stock) 4.45 × 10  4.71 × 10  1.82 1.73 × 10  0 

M (History, previous licenses) 6.53 22.9 0.00 428 705 

P (Licensing pool) 502 805 0.00 2.35 × 10  344 

S (Foreign R&D pool) 9.49 × 10  1.88 × 10  1.15 × 10  5.99 × 10  0 

N (Training, share of labor 

expenditures) 

7.15

× 10   

1.81

× 10   
0.00 

2.53

× 10   
1,044 

Total obs 1,877 
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3.  MICROECONOMIC MODEL  
 

There are at least three explanations for the preponderance of zeroes in the 
technology purchase and R&D variables. First, the one-year tax period may simply be 
too short for firms to have performed enough R&D to be worthwhile reporting for tax 
purposes. Small firms might not consider their efforts to improve products and processes 
as R&D at all, but firms this small probably do not spend much on product improvement 
or research so the omission is slight. Therefore R&D observations might be expected to 
have a few more zeroes than would be correct, but little can be done about this 
traditional omission in R&D data. 

Second, the zero observations may be involuntary, due to an inability to perform 
R&D in the current period (acquisition of research personnel requires a time-consuming 
search process) or lack of suitable technology contracts offered on the market (again a 
lengthy search process may be involved). This does not really cause more zeroes to 
occur in the sample than is appropriate, but rather shifts non-zero observations from the 
period when demand is recognized to the end of the search period. The only bias would 
occur if small firms shifted purchases more or less than large firms do (Kleinknecht, 
1987). 

The third and mostly likely explanation is that the choices of zero R&D and/or zero 
technology license payments are the result of a rational and unconstrained choice by the 
firm, a corner solution in the typical production input-choice problem. In decisions 
regarding the purchase of technological inputs (R&D or licensing), other input choices 
are made concurrently, so the model allows the demand for R&D, technology licensing, 
labor and capital to be simultaneously determined. In addition, firm size is permitted to 
affect how much a firm pays for capital or labor, and how quickly the firm can adjust to 
changes in technology. The degree of training in the labor force may alter the speed of 
adjustment to new technology, but also impacts upon labor costs and the productivity of 
labor. A firm’s history of previous licensing experience may affect how much it learns 
from new R&D or licensing, as well as how easily it can find new licenses. Disembodied 
spillovers augmenting the intellectual capital stock of the firm in combination with new 
technological acquisitions, and so may impact upon a firm’s choices.   

This model builds directly on the excellent work of Fikkert (1994), but endogenizes 
the factor choices of capital and labor, allowing for a flexible form of production 
function, and extends the analysis by explicitly including firm size and employee 
training variables. Firm size proves to be a particularly important addition, both on its 
own and in interaction terms with other variables. In fact, if Fikkert’s model is used on 
the dataset here, his result holds (i.e., R&D and licensing are substitutes), while the 
extensions offer further insight. Our results are consistent with industry-level analyses as 
well, but clarify some important points. 

 For analytical ease, let us assume that increases to technology are time-separable, 
so that  
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  = ∑ (1 −  )       
 
               (1) 

 
is the knowledge stock at any given time  , where today’s stock depends only on 
increments I for previous periods. The increment is really a set of new innovations (new 
applicable productive knowledge), and so will be represented as an “innovation 
production function” in expectation as  
 

  =      +     
 +     +     +         +          

							+        +         +         ,            (2) 
 

where  	 is real R&D by the firm (“quantity of R&D”, in a sense, since  =    	 ),  	 is 
real technology purchases by the firm (again, where	 =    	 ), M is an indicator of 
previous experience with technology licensing, and S is a spillover pool of knowledge in 
the industry, from R&D performed by other nations. 

This formalization allows for interactions between each technology variable of 
interest and the technology meta-variables for history and spillovers. The experience 
variable M is included to capture effects associated with previous exposure to 
technology as well as benefits or costs which repeat licensees face. Spillovers have been 
widely acknowledged to play a role in the creation of new knowledge and are included 
here to test that fact and their specific interactions with other technology acquisition 
variables.   

Technology increases expected output multiplicatively, so is either Hicks-neutral or 
can be approximated as such over a brief time period (i.e. three years of data). Assuming 
a CES production function with constant returns to scale, expected output can be written 
as 

 

  =     =   (     
 

+   [(1 +     )   ]
 ) / ,                (3) 

 
where   is the production function omitting technology,   	   is the real capital input 
used in production ( =    	   ),   is the proportion of labor costs devoted to training, 
and  	 is the real labor input used ( =    	 ). 

In the work which follows, the capital input is a residual category, including all 
inputs which do not qualify as labor, R&D or technology purchases. Therefore, the 
factors of production are now skill-adjusted labor and “capital”. Training is expressed as 
a proportion of labor costs, and so acts as a proxy for the human capital stock of the 
employees, over and above pure labor inputs. Total sales are represented by   , meaning 
that output prices are proxied by the technology level inherent in the product and 
therefore are subsumed into the   term during estimation. 

Three new variables are introduced in the next equation ( ,  , and  ), all to capture 
differences between firms and between industries. Firm size  , measured as capital 
stock (alternatively sales, with no appreciable change in results), is included to permit 
large and small firms to react differently to input choices. Expenditures on training   
distinguish firms with well-trained workforces. They may also be associated with more 
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technical industries, but industry dummies will account for those differences. For 
example, some industries have a tradition of more licensing than others, by nature of 
their products and processes or for legal reasons. The technology pool variable   
indicates the number of licenses signed in the industry in the five years prior to the 
observation year by other firms, as an indicator of the prevalence of licensing in the 
industry. 

Assuming that firms maximize the expected present discounted value of future profit 
streams (or the present value of the firm) by choosing {   ,    ,    ,    }	combinations, the 
choice problem is: 

 

max 	  = E ∑           
 

+   [(1 +     )   ]
  

 

  
   	− (  +   

 )   −

																																	(  +   )   −	(  +    (1/  ) +   
 )   			− (  +      +

																																		   (1/  ) +   
 )   −  (  )] ,        (4) 

 
where 

 
  =     +     +   +   

 ,          (5) 

 
 (  ) =     +     

 ,                (6) 
 
  =      +     

 +     +     ,          (7) 
 

   is an indicator of firm size so (1/  ) is an indicator of firm “smallness”,    is 
training expenditures on labor force,    is the technology license pool, and    is the 

industry dummy. 
Equation (4) uses E as the expectations operator, and as the discount factor, both of 

which apply to total revenues and costs in every period of the future. It is simply output 
(with the price of output standardized to unity) followed by five cost components. 

 The costs of R&D are the direct costs of searching for a technology, which the firm 
recognizes at the time of the decision. Included is a random term which the 
econometrician cannot observe, and which depends directly on the nature of the 
technology (i.e. how difficult it is to research this particular technology) but which is 
observed by the firm before input choices are made.  

The search and transactions costs of obtaining a technology contract follow, and are 
captured by equation (5), where costs are dependent upon the licensing history of the 
firm (  ), the pool of technology contracts available in the industry (  ), an industry 
indicator (  ), and a random error term   . Once again, the error term is observed by 

the firm when the decision is made, but not by the econometrician, since it depends on 
the specific nature of the technology (i.e. how difficult it is to license this technology). 
The error term is assumed independent of   . 
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The costs of capital (or the opportunity cost of “other inputs”) include the 
economy-wide    with some recognition of the smallness of the firm (1/  ) and     
should be positive, since the indicator is the inverse of firm size and larger firms in 
general face lower interest rates or better credit terms. Also included is the random term 
   which is uncorrelated with other variables in the model, and is seen by the firm 
before input decisions are made. 

Similarly, the direct cost of labor incorporates the industry's wage rate and a random 
component   , as well as the effects of training   , and firm smallness (1/  ). The 
coefficient     should be positive, and the hypothesis that smaller firms pay more for 
labor will be informally tested through the estimated sign of    . 

Adjustment to new technology is the last term in equation (4) and is modeled by 
equations (6) and (7), with quadratic adjustment costs dependent on the choice variables 
of R&D and technology purchases (or magnitude of the change in technology), as well 
as on the size of the firm and training of the labor force (or ability to cope with 
technological change). 

Assume that the random terms are independent and identically distributed as  
 
  

 ~ (0,   
 ),                            (8) 

 
  

 ~ (0,   
 ),               (9) 

 
  

 ~ (0,   
 ),                               (10) 

 
  

 ~ (0,   
 ),                          (11) 

 
and are observed by the firm but not by the econometrician at the time input decisions 
are made. It is also important to assume that the error terms are uncorrelated and that 
they are bounded by   +   

 > 0  and   +   
 > 0  to ensure a well-defined 

maximization problem in (4).1 Also assume that observational errors (and all other 
shocks unobserved by the econometrician but seen by the firms) are independent and 
identically normally distributed. 

The full mathematical derivation of first-order conditions, along with the estimation 
technique, are described in the appendix and result in estimation of parameters for the 
production function (equation 3), input demand for R&D: 

 
1
 Since technology prices are unobservable, it is impossible to test whether the boundary conditions are 

binding, even using estimated errors. If the variance of the error terms is small relative to technology prices, 

which will be assumed here, the boundary conditions will be irrelevant for all but extremely negative (and 

highly infrequent) errors. For readers uncomfortable with these assumptions, the same estimation results 

could be obtained with a completely non-stochastic model using estimation equations which treat the random 

terms as pure measurement error, uncorrelated between licensing and R&D and normally distributed with no 

boundary conditions on the error terms. 
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  =   +   
  +    

   +   
  +   

  +    
   +    

   +   
  +        (12) 

 
and input demand for technology licensing: 
 

  =   +   
  +    

   +   
  +   

  +    
   +    

   +   
     

  +  
  +   

  +   
 +   .                (13) 

 
 

4.  RESULTS 
 

Estimation was performed in two stages, first obtaining coefficients for the   and 
  equations, and then using those coefficients to estimate   in the subsequent 
estimation of the   and   equations. Thus, the results will be reported in two distinct 
blocks. While actual sales data could be used here, rather than relying on estimated sales, 
that alternative would use data unavailable to firms at the time of input choice. 

Integrals were approximated using Gaussian quadrature of order 12, and FIML 
estimations used a combination of random search and gradient check routines. Standard 
tolerances determined convergence. 
 
4.1.  The Production Function:   and   Equations 
 

Only selected results of estimation for the   and   first-order conditions (A.3) and 
(A.4) are presented in Table 3. Elasticities of substitution show capital and labor to be 
substitutes in all industries. The approximate skill-adjusted labor shares of total product 
implied by the estimates are also presented, varying between 60 and 90 percent in all 
industries with the exceptions of the primary, metals and service sectors. Metals is 
unexpectedly high, and services are unexpectedly low, but the primary sector result may 
be explained more by definition of the sectors than by innate differences. Labor-intensity 
may have been a criterion in assigning firms to the primary, food or wood sectors. 
Although not reported here, values of anwere consistently positive, indicating that 
trained labor does indeed add to the output value of a firms, and were especially 
productive in the services, drugs/health, food and plastics sectors.  

Remembering that 1/  is a measure of smallness of the firm,    > 0	shows that 
capital costs are higher for small firms (as expected, if larger firms face better credit 
terms, for example) in almost every industry. Only two sectors, Stone/Glass and 
Miscellaneous Manufactures, show lower capital costs for small firms. Note that in 
Drugs/Health and Services, the effect of firm size is insignificantly different than zero. 

More training of employees is associated with slightly lower costs (   < 0) in all 
sectors except primary industries, indicating that one highly-skilled worker can replace 
low-skill workers who would cost more to hire. The effects are significant particularly in 
the Chemicals, Metals, Machinery, Food, and Plastics sectors, but even there the size of 
the total effects is very small. 

Small firms experience lower labor costs in all industries (   < 0) but one, 
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affecting labor costs very slightly in all cases. So there is support for the hypothesis that 
large firms consistently face higher labor costs, albeit with a small difference.  

 
 

Table 3.  Parameter estimates (and t-statistics) for   and   equations  
(equations A.3 and A.4) 

 Implied 
Elasticity of 
Substitution 

Implied 
Share of 
Labor in 
Output 

Cost Effects of 
 Small size (1/Z) and Training (N) 

R-squared 
by 

equation Capital Costs Labor Costs 

             
Primary 4.88 0.91 1.34 

(0.4) 
0.01 
(0.8) 

-0.01 
(2.5) 

 =0.39 
 =0.36 

Electrical 1.71 0.69 0.37 
(0.1) 

-0.18 
(0.9) 

0.15 
(4.9) 

 =0.88 
 =0.94 

Chemical 1.76 0.67 0.67 
(0.3) 

-0.01 
(2.6) 

-9.2e-4 
(0.7) 

 =0.52 
 =0.70  

Drugs and 
Health 

7.63 0.87 -0.01 
(0.2) 

-0.01 
(1.6) 

-7.8e-6 
(0.0) 

 =0.50 
 =0.68 

Transportation 2.07 0.82 0.92 
(0.4) 

-6.7e-3 
(1.6) 

-2.1e-4 
(0.1) 

 =0.70 
 =0.82 

Metals 1.74 0.91 0.86 
(0.5) 

-4.6e-3 
(1.8) 

-2.4e-3 
(2.7) 

 =0.95 
 =0.94 

Instruments 1.99 0.67 0.05 
(0.2) 

-1.9e-3 
(0.3) 

-3.6e-4 
(0.2) 

 =0.70 
 =0.77 

Machinery 1.97 0.72 0.83 
(0.5) 

-7.3e-3 
(2.7) 

-1.2e-3 
(1.3) 

 =0.48 
 =0.84 

Food 4.57 0.77 0.87 
(0.5) 

-8.8e-3 
(9.0) 

-1.5e-3 
(1.3) 

 =0.54 
 =0.74 

Textiles 4.76 0.66 1.15 
(0.6) 

-3.1e-3 
(1.2) 

-8.6e-4 
(0.8) 

 =0.55 
 =0.57 

Plastic and 
Rubber 

3.24 0.81 0.35 
(0.1) 

-0.01 
(2.1) 

-1.9e-3 
(1.3) 

 =0.66 
 =0.80  

Stone and 
Glass 

4.09 0.69 -0.37 
(0.1) 

-7.2e-3 
(1.0) 

-3.8e-5 
(0.2) 

 =0.47 
 =0.78 

Wood and 
Paper 

1.65 0.73 0.03 
(0.1) 

-5.6e-3 
(0.6) 

-1.2e-5 
(0.1) 

 =0.41 
 =0.82 

Misc. 
Manufactures 

2.34 0.74 -0.36 
(0.2) 

-6.1e-3 
(1.1) 

-1.2e-4 
(0.1) 

 =0.69 
 =0.94 

Services 
Unknown 

3.61 0.49 -1.7e-3 
(0.1) 

-6.4e-3 
(7.7) 

-9.5e-7 
(0.1) 

 =0.03 
 =0.11 

Notes: t-statistics are in parentheses. "Pseudo" R-squared values are calculated as in the linear case, as the 

share of variation in   and   explained by the independent variables. 
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4.2.  Technology Acquisition: The   and   Equations 
 
Using the parameter estimates from the   and   equations, all of the variables 

necessary for estimation of the   and   equations can be constructed. For readability 
of the coefficients, size variables (  and  ) are in tens of thousands of units, while 
training ( ), as above, is expressed as a percentage of labor costs. Table 4 gives results 
for the regression including all sectors but results are similar if only manufacturing 
industries (sectors 2 through 14) are considered. The three coefficients constrained in 
value by our cross-equation knowledge are indicated. 

 
 

 Table 4.  Parameter estimates (and  -statistics) for   and   equations 
(equations A.11 and A.12) 

Parameter from 
equation (A.11) Effect on R&D expenditures of Coefficient ( -statistic) 

    Constant 0.53 (0.4) 

  
   Technology purchases ( ) -3.95*** (3.8) 

   
   Technology purchases ( ) interacted with est. sales ( ) 1.91*** (2.8) 

  
   Firm size ( ) 1.62** (2.2) 

  
   Training of employees ( ) 0.09 (0.2) 

   
   Licensing history ( ) interacted with est. sales ( ) -0.75** (1.9) 

   
   Foreign R&D spillovers ( ) 

interacted with est. sales ( ) 

0.13 (0.5) 

  
   Estimated sales ( ) 1.43** (1.9) 

Parameter from 
equation (A.12) Effect on technology purchases of Coefficient ( -statistic) 

    Constant 0.61 (0.8) 

  
   R&D expenditures ( ) -0.25 (constraint) 

   
   R&D expenditures ( ) 

interacted with est. sales ( ) 

0.12 (constraint) 

  
   Firm size ( ) 1.62 (constraint) 

  
   Training of employees ( ) 0.09 (0.1) 

   
   Licensing history ( ) interacted with est. sales ( ) 1.32* (1.7) 

   
   Foreign R&D spillovers ( ) interacted with est. sales ( ) -0.06 (0.3) 

  
   Estimated sales ( ) 2.29*** (2.8) 

  
   Licensing history ( )  -2.11** (1.9) 

  
   Technology license pool ( ) -0.76*** (2.1) 

Notes:  -statistics are in parentheses. * for 10% confidence, ** for 5% confidence, *** for 1% confidence 

interval. “Pseudo” R-squared values, calculated as in linear models, as the proportion of variation in the 

dependent variable accounted for by the independent variables, are 0.73 and 0.11 for the   and   equations 

respectively, with 1,877 observations. 15 industry-level dummy variables were included as dictated by the 

model, but are not reported here. 
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Note that while FIML estimates are consistent, a bootstrapping procedure was 
required to correct for the effects of the estimated regressor   in both equations. 
Bootstrapping used a Monte Carlo approximation, repeating estimation until estimates 
and standard errors converged (see Shao and Tu, 1995). 

Explanation of the coefficients is complicated by the presence of the unobservable 
“prices” of R&D and technology purchases in the coefficient definitions, since the 
estimated coefficients offer only a partial view at the model’s parameters. Analysis will 
therefore interpret the intuition behind the estimated coefficients before outlining 
implications for the “deep” structural parameters of the model.  

The relationship between R&D and technology licensing is delicate to interpret. 
While the coefficient of technology purchases in the R&D equation (  

 ) is negative, 
there is an interaction effect with production represented by    

 which is positive. Thus, 
while the two forms of technology acquisition are contemporaneous substitutes, larger 
firms (measured by   or sales) use them as complements. This result makes intuitive 
sense, suggesting that without a certain critical size, the acquisition of technology 
through licensing only acts as a substitute for own R&D. However, for firms large 
enough to support their own R&D department or hire personnel devoted to product and 
process improvement, there is a mutually reinforcing or complementary relationship 
between R&D and licensing. For firms without a scale sufficient to support this fixed 
cost, the choice is made in favor of the cheapest alternative, either R&D or licensing. 

In fact, in this sample less than five percent of all firms experienced a negative total 
effect of technology purchasing on R&D (the total coefficient on licensing   being 
  

 +    
   in the R&D equation). So the critical size in Brazil is quite low relative to 

the size of firms in this sample, resulting in predominantly complementary effects of 
licensing on R&D. However, since the sample reflects the size distribution of firms in 
the tax database CADEC, which emphasizes medium- to large-sized firms, a higher 
percentage of firms in the general population are experiencing a “total substitute” effect.  

As expected, size has a positive effect on R&D (  
 > 0), and the incorporation of 

the effects of estimated sales (  
 > 0) into a total size effect does not change that fact. 

While the   and   variables are of course correlated, subsequent estimation omitting 
either variable showed no significant change in any of the coefficients.  

Training of the labor force is not strongly associated with high R&D and technology 
licensing expenditures (  

 ≅ 0,   
 ≅ 0), where it appears equally insignificant for both 

manufacturing and service industries. So firms with well-trained workforces do not on 
average spend more on acquisition than other firms do. 

Prior licensing is associated with less current R&D expenditures and less current 
licensing expenditures. Coefficients actually indicate a dampening effect on current 
licensing which disappears for larger firms (   

 < 0,    
 > 0	 respectively). Prior 

licensing thus allows smaller firms to spend less on future licensing and R&D than they 
would otherwise. This is not the result of front-loaded payments on licenses (with large 
lump sum fees and few royalty payments), because the history variable is defined as the 
number of previous licenses, not prior license payments. So it truly is more exposure to 
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the licensing process, and not more early expenditures on licenses, that enables future 
licensing costs to fall. They spend less on licensing because they form connections with 
licensing firms which permit cheaper future contacts, and spend less on R&D because 
they learn about the technology during the license period and can perform more effective 
R&D afterwards. Large firms may see a smaller decrease in their licensing expenditures, 
because despite the cost savings, they are interested in maintaining licensing activity as a 
complement to their ongoing R&D. 

Knowledge spillovers, or the presence of recent foreign R&D in the industry, have a 
small positive effect on domestic R&D and a negative impact on technology licensing 
expenditures, as evidenced by    

  and    
 . One possible explanation for this weak 

result is that spillovers encourage Brazilian firms to perform more R&D, but the 
presence of those same spillovers permits each of them to generate effective results 
while spending less, keeping the effect on R&D spending roughly zero. 

A cyclical pattern of licensing is captured by the technology license pool variable  , 
which shows that after a large number of licenses are signed, fewer firms want to license 
and licensing expenditures by each firm decline. There is an obvious incentive to avoid 
the peaks, waiting until after each successive wave of licenses is signed to benefit from 
lower prices. However, there is an implicit cost faced in allowing competitors to develop 
new technology before you, so the “bunching-up” of technology acquisition is not 
altogether surprising.  

 
4.3.  Model’s “Deep” Structural Parameters 

 
Information about the model’s “deep” structural parameters is drawn from the 

estimated coefficients and their definition in equations (A.7) and (A.8). 
The signs of the constant terms    and    are consistent with positive first-order 

and negative second-order coefficients of adjustment costs (   > 0	and	  < 0 ), 
meaning that there are concave costs of adjustment, with larger changes costing less per 
unit. This makes intuitive sense, and is a reason for lumpy technological changes, or 
lumpy investments in technology acquisition. 

The signs of   
 ,   

 ,   
 	, and 	  

  together imply that   ,   < 0 <   . In other 
words, from equation (7), adjustment costs are increasing functions in the amount of 
R&D and technology licensing performed (or technological change occurring in the 
firm), but are decreasing in firm size. Larger firms are thus better equipped to deal with 
adjustments to new technology. Training of the labor force (  

 	and	  
 , and therefore 

  ) make no difference in the adjustment to new technology. 
For R&D’s effects on increments to each firm’s knowledge (equation (2)), the signs 

of   
 ,    

 ,    
 , and    

 	 indicate that   > 0,    < 0,    > 0	and	   ≅ 0. So it 
appears that R&D adds to knowledge in each period through a pure effect (  > 0), and 
gives an added boost if the firm has licensed in the past (   > 0) . However, 
simultaneous licensing detracts from R&D productivity (   < 0). The lesson appears 
to be that it takes time to assimilate the knowledge gained through licensing, and to 
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translate it into more productive R&D. This is a reason to continue R&D and licensing 
in the same period, even if the simultaneous interaction term is not adding to the 
productivity of either today. Each activity adds independently to the intellectual capital 
of the firm, and over time a history of licensing adds even further to the productivity of 
R&D. An alternative (but related) explanation is that only firms which succeed at 
licensing repeat the experience. The two explanations are observationally equivalent, 
since the difference relies on the unobservable ability of a firm to benefit from licensing. 

Similarly, for technology licensing,   
 ,    

 	and	   
 	 imply that   > 0,    >

0	and	   ≅ 0. That is, technology licensing itself adds to the knowledge stock today, 
although it adds less if the firm has a history of licensing. This implies that licensing in 
its own right (not in interaction with R&D) offers the greatest gains early. Later gains, 
following from a history of licensing, come through their interaction with R&D. 
Disembodied knowledge spillovers from foreign R&D have no direct impact through 
licensing activity. 

Finally,   < 0	and	  < 0	are tied to the signs of   
 	and	  

  and. Tracing these 
parameters back to equation (5) suggests that a history of licensing reduces the costs of a 
current license (due to familiarity with the system, contacts with licensor firms, etc.) as 
does the size of the license pool (perhaps a larger pool gives more market power to 
potential licensees). 

 
 

5.  CONCLUSIONS 
 

Some policy considerations have already been identified, but are worth summarizing 
here. The results of this paper have shown that at first glance, R&D and technology 
licensing are substitute methods of obtaining technology, but only the smallest firms see 
them as such. Instead, most larger firms use them as complements. In our sample, the 
minimal estimated negative effects of licensing on R&D were greatly overwhelmed by a 
positive interaction with size, making a significant complementary relationship. This 
primary result is consistent with previous literature, agreeing fundamentally with both 
firm-level and industry-level analyses, but points to an important new dynamic.  

Furthermore, a history of licensing is associated with less current R&D and less 
licensing expenditure. However, larger firms may actually see more licensing 
expenditure with a history of licensing behind them. Firms which license continue to do 
so, but become familiar with the system and spend less on licensing with experience. 
Their experience permits them to spend less on the R&D they perform, but that same 
experience does not discourage firms from creating or continuing an R&D program. 
Large firms, who see R&D and licensing as complements, tend to continue and even 
increase their expenditures on both activities with experience. 

Entrepreneurs might be justifiably worried about this result. Large firms may lobby 
aggressively for open-door technology policy, while small firms are split in their 
allegiances. Small firms that perform creative R&D may very well be the lone camp 
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arguing against technology liberalization. 
What effects can be expected from recent changes in Brazilian legislation designed 

to liberalize technology transfers? Easier access to foreign technology licenses will act 
as a stimulus to R&D for most firms, but may discourage R&D by some small firms. 
Over the long run, as firms obtain exposure to technology via licensing, the history 
variable indicates that more firms will license technology from abroad, and thus will be 
able to spend less on R&D. However, there are at least two reasons for hope that 
liberalization will not act as a depressant on technological change and growth. 

First, inasmuch as cheaper access to technology translates into lower costs via 
cheaper acquisition of new technology and greater growth potential, a liberalizing policy 
shift may be effective at fostering economic progress. Lower total expenditures on 
technology acquisition can be seen as a beneficial cost reduction provided to small firms, 
and we have presented no evidence yet on whether the speed of technological change 
and growth is faster or slower using licensing or innovation.  

Second, there is no obvious need for concern even about a slowdown in Brazilian 
domestic innovative activity, or about the danger of becoming dependent upon foreign 
technology. While analysis indicates that firms with a history of licensing continue to do 
so, it also indicates that their expenditures on licensing tend to decrease with experience. 
Licensing may be permitting Brazilian firms to continue their R&D programs with lower 
expenditures for the same outcome.  

Critics may still be justified in their fears about the potentially dire effects of 
technology liberalization on Brazilian innovative activity. However, if the goals of R&D 
and technology licensing are the same, to create new intellectual capital, then a decision 
to promote one and/or the other should be based on their relative costs and benefits. 
Future work should evaluate the ability of each activity to achieve the desired end--- the 
creation and improvement of output, particularly during an era of electronic 
communication when the definition of tacit knowledge may have changed. 

 
 

APPENDIX 

 
To simplify the solution, assume that the firm is on a steady-state path for both its 

capital and labor inputs, or that production next period net of any technological change 
will be today's production scaled by some constant economy-wide rate of growth γ . 
Therefore  (    ) =     , where   represents an expected future value at time  . 
This assumption is made to simplify the time dimension of the estimation problem, and 
is necessary due to data constraints. 

The first-order conditions for maximization with respect to each choice variable, 
assuming2 that |   (1 −  )|< 1 and defining  ∗ = 	   (1 −  )/(1 −    (1 −  )), 
 

2
 This assumption guarantees a finite solution to the infinite horizon problem. It is a realistic assumption, 

since only the expected growth rate will exceed unity, and then will probably be less than 1.1 (indicating 
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are: 
 
   = −  −     − 2    (    +     +    +    ) −    

+ ∗(  +    +     +      ) ,                    (A.1) 
 

   = −  −     − 2    (    +     +    +    ) −    −    −   −

																		  +  ∗(  +    +     +      ) ,      (A.2) 
 
   =             −   −    (1	/ ) −   ,      (A.3) 
 
   =        [(1 +    ) ]    −   −    (1	/ ) − −    −   ,       (A.4) 
 

where the subscript   is implied for all variables.  
Since    and    are assumed always to be chosen as interior solutions, equations 

(A.3) and (A.4) can be set equal to zero as first-order conditions and estimated. 
Dependent variables    and    do not enter into (A.3) and (A.4) except as lagged values 
in  , so these two equations can be estimated independently of the other two equations, 
where for any given period   can be decomposed into a firm-specific element and a 
time trend common to all firms. Estimation uses industry-specific time trends for  , 
implying that the knowledge stock available to each firm in an industry is the same 
within a given year. Longer time series would be required to relax this assumption and 
allow   to vary on a firm level. Estimation by nonlinear least squares using the ratio of 
(A.3) and (A.4) eliminates the W term but gives insignificantly different results.  

Unlike    and 	  , 	   and    are frequently chosen as zero values, so the 
Kuhn-Tucker conditions 

 
     = 0,	                (A.5) 
 
     = 0,	                (A.6) 
 

where    ≤ 0,   ≥ 0,    ≤ 0, and	  ≥ 0	are necessary first-order conditions. They 
give four cases to consider: 

 
(a)   > 0	and	  > 0, 
 
(b)   > 0	and	  = 0, 
 
(c)   = 0	and	  > 0, or 
 

 

expected growth of ten percent economy-wide!). Without this assumption, there is no defined maximum, 

since the discount factors would allow explosive solutions to the problem. 
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(d)   = 0	and	  = 0. 
 
The equations which follow, distinguish between “real” inputs (and), and nominal 

inputs, so assume that prices are constant (an impossible assumption to test, but a 
realistic one considering the data are measured in constant terms. 

Case (a) is the simplest, since   > 0	   	  > 0 imply that    = 0	and	   = 0, so 
input demand for R&D can be expressed in estimable form as 

 
  =   +   

  +    
   +   

  +   
  +    

   +    
   +   

  +   ,     (A.7) 
 
where  
 
  = −  (  +     )/2    

    
 =  ∗       /2    

 ,  
  

 = −    /       
 =  ∗       /2    

 ,  
   

 =  ∗       /2    
     

 =  ∗      /2    
 ,  

  
 = −    /    = −      /2    

 ,   
 = −    /  . 

 
Input demand for licensing can be written similarly:  
 
  =   +   

  +    
   +   

  +   
  +    

   +    
   +   

     
       +  

  +   
  +   

 +   ,        (A.8) 

 
where 
 

  = −  (  +     )/2    
    

 =  ∗       /2    
 , 

  
 = −    /      

 =  ∗      /2    
 , 

   
 =  ∗       /2    

     
 = −    /2    

 , 
  

 = −    /    
 = −    /2    

 , 
  

 = −    /    
 = −    /2    

 , 

   
 =  ∗       /2    

   = −      /2    
 . 

 

Estimation is simplified by duality conditions implying that   
 =

 

  
 ,   

 =

  
   

 

  
 , and	   

 = (1/  
 )    

  must hold across both equations. Since they are implied 

by the model, these constraints on the coefficients are not tested during estimation. 
For case (b), since   > 0	so	   = 0, but	  = 0.	Therefore the equations for input 

demand are  
 
  =   +   

  +   
  +    

   +    
   +   

  +   ,      (A.9) 
 
  = 0 =   +   

  +    
   +   

  +   
  +    

   +    
   +   

     
       +  

  +   
  +   

 +   ,           (A.10) 
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with coefficients defined as above. Case (c) is symmetric, since it represents all 
observations with   = 0	but	  > 0: 

 
  = 0 =   +   

  +    
   +   

  +   
   

																+   
   +    

   +   
  +   ,           (A.11) 

 
  =   +   

  +   
  +    

   +    
    

							+  
  +   

  +   
  +   

 +   ,           (A.12) 

 
Case (d) has observations with two corner choices, and therefore uses: 
 
  = 0 =   +   

  +   
  +    

   +    
   +   

  +   ,       (A.13) 
 
  = 0 =   +   

  +   
  +    

   +    
    

															+  
  +   

  +   
  +   

 +   .           (A.14) 

 
Now to form a likelihood function for the   and   demand equations, recognize 

that 
 
Pr(   ,    ) = | | ∙ Pr	(   

 ,    
 ),                   (A.15) 

 

where | | =  
    

 /      
 /  

    
 /      

 /  
 	or	  

      

      
 , 

 
so the determinant of the Jacobian is required for all four possible cases. For case (a), 
using equations (A.7) and (A.8),  

 

|  | =  
1   

 +    
     

  
 +    

     1
  

								= 1 − (  
 +    

     )(  
 +    

     ).         (A.16) 
 
For cases (b), (c) and (d),   does not enter into the   equation and   does not 

appear in the   equation. This means that    =    = 0 for these cases, but their 
diagonal elements are the same as those of the    matrix, meaning that |  ||  ||  | = 1. 
Therefore, to assure positive likelihood values (i.e. existence of a solution), the 
coefficients need only be constrained so that |  | > 0.  

Finally, in forming the likelihood function, notice that the last three cases are 
integrated only over those ranges for which the Kuhn-Tucker conditions are met for 
maximization (namely where the first derivative of the objective function is 
non-positive). Thus the likelihood function for the   and   equations jointly is 
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 ( ,  ) = ∏ |  | (  ,   ) ∙ ∏ ∫  (  ,   )      

  
  
   

  
   ∙ ∏ ∫  (  ,   )      

  
∙  

   

																										∏ ∫ ∫  (  ,   )         

  

   

  
  
   ,          (A.17) 

 
where 

 
   = −(  +   

  +    
   +   

  +   
  +    

   +    
   +   

     
     +  

  +   
  +   

 ), 

   = −(  +   
  +    

   +   
  +   

  +    
   +    

   +   
  ),   

   = −(  +   
  +   

  +    
   +    

   +   
  +   

  +   
  +   

 ), 

   = −(  +   
  +   

  +    
   +    

   +   
  ), 

 
and    refers to all observations in case (a),    to all in case (b),    to all in case 
(c), and    to all in case (d). Using (8), (9), and (A.7) through (A.14), the error terms 
are independent and distributed as  

 

  ~  0,   
  

    

     
  

 

 =  (0,    
 ),           (A.18) 

 

  ~  0,   
  

    

     
  

 

 =  (0,    
 ).           (A.19) 
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