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In this paper, we analyse the conditional variance of the Australian real gross domestic 
product (GDP) and the expenditure components by a variety of generalised autoregressive 
conditional heteroskedasticity (GARCH) models. First, we test the plausibility of the 
constant-correlation assumption by employing Tse’s (2000) Lagrange Multiplier (LM) test 
and the Bera and Kim’s (2002) Information Matrix (IM) test. Our results indicate that the 
correlations among the shocks to real GDP and its various expenditure components are 
invariant over time. In addition, these shocks are not highly correlated with one another. 
Second, we examine if volatility asymmetry exists in the Australian business cycle by 
proposing four bivariate asymmetric GARCH specifications. Except for the case of gross 
fixed capital formation, the evidence of asymmetric conditional volatility in the growth rates 
of the Australian real GDP and the other components is weak. Despite the weak evidence of 
asymmetric volatility, higher volatility is generally associated with the contractionary phase 
of the Australian business cycle. This finding has important implications for macroeconomic 
policy and forecasting for business cycle. 
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1.  INTRODUCTION 
 
Business cycle analysis has mainly focused on the asymmetric nature of 

macroeconomic variables and the co-movements among such variables. In a seminal 
article, Neftci (1984) advocates a nonparametric test for “steepness” in economic time 
series and concludes that contractions are steeper than expansions for postwar 
unemployment data. On the other hand, Sichel (1993) proposes a test for “deepness” and 
finds evidence in unemployment variables that contractions are deeper than expansions. 

 
* The authors are grateful to an anonymous referee for very helpful comments and suggestions. 
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More recently, researchers have introduced specific non-linear parametric models. One 
category of these models posits that the non-linear behaviour occurs in the conditional 
mean function. For instance, Terasvirta and Anderson (1992) and Beaudry and Koop 
(1993) have used the threshold autoregressive model to study cyclical asymmetries. 
Their results generally show that contractions are less persistent than expansions. 

An alternative category of models concentrates on the property of conditional 
heteroskedasticity. A noteworthy example is Engle (1982), who models the time-varying 
variance of the UK inflation by proposing the Autoregressive Conditional 
Heteroskedasticity (ARCH) model. Weiss (1984) also finds evidence of ARCH in the 
US industrial production. However, not many researchers have attempted to model 
asymmetries in the conditional variance of business-cycle variables.1 Brunner (1992) 
has used the semi-nonparametric (SNP) approach to construct the changing conditional 
density of the US real GNP and found strong evidence of cyclical asymmetry in real 
GNP growth rates. More recently, Hamori (2000) applies a family of univariate GARCH 
models to the real GDP of Japan, the UK and the US, and concludes that these series do 
not exhibit significant asymmetric conditional volatility. This conclusion is reversed by 
Ho and Tsui (2001, 2003 and 2004), who find significant volatility asymmetry in the 
real GDP of the developed economies, such as Canada, Japan, the UK and the US, and 
the developing economies of Greater China. 

One major drawback of univariate GARCH models is that they fail to capture the 
co-movement of business-cycle variables, an important feature stressed by researchers 
such as Lucas (1977). Diebold and Rudebusch (1996) have further proposed that a 
successful model for business cycles should not only take into account the co-movement 
of macroeconomic variables but also their possible asymmetries or non-linearities. As 
such, it is more apposite to consider various asymmetric GARCH models in multivariate 
contexts. 

Several recent papers are on the issues of comovements and/or asymmetries of the 
Australian business cycle (see Fisher et al. (1996), Olekalns (1998), Bodman (1998), 
Henry and Summers (2000), Cashin and Ouliaris (2001), and Bodman and Crosby 
(2002)). Except Fisher et al. (1996), who have documented the volatilities of the cyclical 
(detrended) series and their cross correlations with cyclical real output of Australia, all 
of the other papers address the issue of asymmetry with emphasis on the conditional 
mean function, thereby ignoring the conditional volatility of real output. 

A deeper understanding of the conditional heteroskedasticity and volatility 
asymmetry of business cycles has important implications for macroeconomic and 
business cycle theory and forecasting. If business cycles are conditionally heteroskedastic 
and exhibit volatility asymmetry, then any theory assuming the absence of either of 
these properties is probably inadequate. This is related to Valderrama’s (2001) main 

 
1 To the best of our knowledge, the few exceptions are Brunner (1992, 1997), French and Sichel (1993), 
Hamori (2000), and Ho and Tsui (2001, 2003, and 2004). 
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criticism of the real business cycle model. In addition, neglecting ARCH effects may 
lead to a loss in asymptotic efficiency of parameter estimation, over-rejection of 
conventional tests for serial correlation (Milhoj (1985), and Diebold (1987)), and the 
identification of overparameterised ARMA models (Weiss (1984)). For practical 
purposes, a proper understanding of conditional variance helps develop a more realistic 
confidence interval for forecasting purposes (see Engle (1982)). 

In this paper, we examine the conditional volatility of the Australian real GDP and 
expenditure components by proposing a variety of GARCH models in multivariate 
contexts. The major problem with multivariate GARCH (MGARCH) models is that they 
inevitably increase the number of parameters to be estimated and complicate the 
specifications of the conditional variance-covariance matrix.2 Among others, Bollerslev 
(1990) has proposed the constant conditional correlations (CC-MGARCH) model to 
tackle this problem. However, the constant-correlation assumption is strong, and its 
validity in many contexts has been rejected in recent studies (Tsui and Yu (1999), Tse 
(2000), and Bera and Kim (2002)). This over-rejection may adversely affect the 
robustness of the parameter estimates in the conditional variance equation. As such, one 
main focus of this paper is to test the plausibility of the constant-correlation assumption. 
Specifically, we employ the recently developed Tse’s (2000) Lagrange Multiplier (LM) 
test and the Bera and Kim’s (2002) Information Matrix (IM) test to verify this 
assumption. Our results indicate that the correlations among the shocks to real GDP and 
the various expenditure components of Australia are probably invariant over time, and 
that these shocks are not highly correlated with one another. 

By extending Bollerslev’s (1990) work, we propose 4 different bivariate asymmetric 
GARCH specifications to test for volatility asymmetry. These include the Quadratic 
GARCH (QGARCH), Leveraged GARCH (LGARCH), Threshold GARCH (TGARCH), 
and Asymmetric Power ARCH (APARCH) models, respectively. Except for the case of 
gross fixed capital formation, our estimation results do not find evidence of asymmetric 
conditional volatility in growth rates of the Australian National Accounts. This is in 
contrast to the findings of volatility asymmetry in GDP growth rates reported by French 
and Sichel (1993) and Ho and Tsui (2001, 2003 and 2004) for the U.S., Canada, and 
Greater China. Our results are robust to a variety of alternative model specifications. 
Despite the weak evidence for asymmetry, we find that higher volatility is generally 
associated with the contractionary phase of the Australian business cycle. 

The rest of the paper is organised as follows. In Sections 2 and 3, we discuss the 
theoretical framework and methodology for this study along with Tse’s (2000) and Bera 
and Kim’s (2002) tests, and propose the new bivariate asymmetric GARCH models. We 
then proceed to analyse the estimation results in Section 4, before providing the 
concluding remarks in Section 5. 

 

 
2 Details are discussed in Bera and Higgins (1993). 
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2.  TESTING FOR CONSTANT CONDITIONAL CORRELATIONS 
 
To examine the conditional volatility of the Australian real GDP and expenditure 

components it is useful to test the plausibility of the constant-correlation assumption 
before estimating the bivariate asymmetric GARCH specifications. Bera and Kim (2002) 
developed the following IM test to verify the assumption for the bivariate CC-GARCH 
model. Let  be the bivariate vector of interest with time-varying 
covariance matrix , and let  be the arbitrary mean functions which depend on 

),( 21 ′= ttt yyy

tH )(ξμt

ξ , a column vector of parameters. A typical bivariate GARCH model may be specified 
as follows: 
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Here the conditional variance equations are defined as 

                                        (7) 
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These derivatives are computed iteratively by the following recursions: 
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3.  MODELING ASYMMETRIC CONDITIONAL VOLATILITY 
 
It is understood that the CC-GARCH model does not capture asymmetric volatility, 

whereby the effect of a negative shock on future volatilities is different from that of a 
positive shock of the same magnitude. In order to incorporate asymmetric conditional 
volatility we propose the following 4 different bivariate asymmetric specifications, i.e., 
the QGARCH, LGARCH, TGARCH, and APARCH models. These specifications are 
less restrictive since they nest several versions of popular GARCH models, thereby 
reducing the possibility of conditional variance misspecification. 

Denote  as the  variable of interest and  as the growth rate (in 
percentage) calculated on a continuously compounding basis. We have 

itY thi ity
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Assume that the conditional mean equation for each variable i is effectively captured 

by an autoregressive AR(k) filter: 
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where  is the serially uncorrelated random disturbance term.  is assumed to have 
the structure as stated in Equation (9), with  modified to capture the possible 
existence of asymmetric volatility. 
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QGARCH model 
 
Sentana’s (1995) QGARCH(1,1) model is specified as 
 

1
2

111 −−−− +++= iitiitititiiiit hh βεαεγη ,                                    (23) 
 

where γ  is the asymmetric coefficient. It represents the most general quadratic version 
possible within the ARCH class and encompasses many existing quadratic variance 
functions. It may be nested into non-parametric approaches to dynamic conditional 
heteroskedasticity. 

 
LGARCH, TGARCH and APARCH models 
 
The setups are as follows: 
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When 2=δ , this is the LGARCH(1,1) model. Alternatively, when 1=δ , this is 

the TGARCH(1,1) model. When δ  is not restricted to any positive value, this becomes 
the APARCH(1,1) model (See Ding et al. (1993)). 

  
 

4.  DATA AND RESULTS 
 
All data are quarterly, seasonally adjusted, and expressed at 1999-2000 prices. Our 

data set was obtained from the Quarterly National Accounts of the OECD Statistical 
Directorate, spanning from 1960Q1 to 2000Q4 with 164 observations. It comprises 
Australia’s gross domestic product (GDP), private final consumption expenditure (C), 
gross fixed capital formation (I), government final consumption expenditure (G), exports 
(X) and imports (M) of goods and services. 

 
 

Table 1.  Summary Statistics of Australian Real GDP and the Expenditure Components 
Country GDP C I G X M 

Panel A: Moments, Maximum, Minimum 
Mean 0.0092 0.0088 0.0079 0.0100 0.0150 0.0139 
Median 0.0086 0.0097 0.0073 0.0125 0.0168 0.0162 
Maximum 0.0469 0.0333 0.0782 0.0794 0.1641 0.1188 
Minimum -0.0359 -0.0173 -0.0891 -0.0558 -0.1055 -0.1574 
Standard Deviation 0.0139 0.0083 0.0288 0.0232 0.0457 0.0454 
Skewness 0.1204 -0.2250 -0.3186 0.0202 0.3849 -0.5457 
Kurtosis 3.7633 3.4300 3.2575 3.2817 4.1102 4.3865 
Observations 164 164 164 164 164 164 
Panel B: Jarque-Bera Test 
Jarque-Bera 4.3511 2.6310 3.2071 0.5501 12.3963 21.1463 
Panel C: Ljung-Box Q-statistic 
12 lags 47.0942 5.3560 19.8458 33.0850 23.1763 36.5518 
Panel D: BDS Test 

5.11,3 ==e  4.3895 0.8492 0.9347 4.3515 2.2742 3.3595 

5.11,5 ==e  5.6276 2.1390 1.2489 3.8647 3.4647 3.3290 

0.11,3 ==e  5.6680 0.5255 1.3181 3.3700 2.3816 3.4417 

0.11,5 ==e  8.1576 1.5119 1.4470 3.8293 4.0583 3.4913 

Notes: 1 The Jarque-Bera test statistics and the Ljung-Box Q-statistics follow the chi-squared distribution 
with 2 and 12 degrees of freedom respectively. 2 For the BDS test, e represents the embedding dimension 
whereas l represents the distance between pairs of consecutive observations, measured as a multiple of the 
standard deviation of the series. 
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Table 1 reports the summary statistics of the Australian real GDP and the 
exp

n. First, we use both the Augmented 
Dic

enditure components. As can be seen from Table 1, the series of variables I, G, X 
and M exhibit higher standard deviation relative to real GDP. In particular, X and M 
have the highest standard deviation and exhibit significant leptokurtosis. The Ljung-Box 
Q-statistics in Panel C suggests that significant serial correlation is detected for GDP, G, 
X, and M. Also, the BDS test statistics in Panel D indicate that most of the series, such 
as GDP, C, G, X, and M, are not independently and identically distributed (IID). As 
argued by Hsieh (1993), such departures from IID may be ascribed to the presence of 
conditional heteroskedasticity in the data sets. 

Several estimation issues deserve mentio
key-Fuller (ADF) and Phillips-Perron (PP) tests to check for stationarity in order to 

ensure reliable statistical inference (results are available on request). Both tests suggest 
that all the series are stationary. In addition, diagnostic checking of the ADF model 
indicates the absence of serial correlation in the residuals. Second, we have tried 
different lag lengths and found that an AR(1) model is a more suitable filter for the mean 
equation. Third, the conditional mean and the variance/covariance matrix are 
simultaneously estimated assuming normality using the quasi-maximum likelihood 
estimation (QMLE) method a la Bollerslev and Wooldridge (1992). All programmes are 
coded in Gauss, with the convergence criterion (tolerance level) set to 10-5. To ensure 
the stability of the parameter estimates, we have also used stricter criteria (up to 10-8) 
and all results are found to be similar. Our results are generally invariant to the choice of 
the initial values. Fourth, we adopt an incremental approach by first estimating the most 
restrictive model (CC-GARCH) and then proceeding gradually to the least restrictive 
one (CC-APARCH). Conceivably, such procedures can be tedious but they help to 
secure convergence more expeditiously during estimation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2.  Estimation Results of the AR(1)-CC-GARCH(1,1) Model:  11110 tttttt
2; −−− ++=++= hhyy βαεηεππ

Variable 0π  1π  η  α  β  Correlations LMC IMC Likelihood Value
GDP 0.8663 0.0261 0.0146 0.1333 0.8551 0.1670 1.1935 0.0521 -306.2672 

 (0.1404) (0.0914) (0.0287) (0.0940) (0.0947) (0.0751)    
G 1.3153 -0.3527 0.1132 0.0521 0.9181     
 (0.1941) (0.0835) (0.2214) (0.0546) (0.0681)     

GDP 0.8141 0.0638 0.0088 0.0908 0.8936 0.2314 1.5376 6.7244** -418.2727 
 (0.1327) (0.0831) (0.0326) (0.1213) (0.1302) (0.0779)    

X 1.7693 -0.0955 0.0560 0.0217 0.9732     
 (0.3676) (0.0875) (0.3606) (0.0483) (0.0682)     

GDP 0.8904 -0.0053 0.0173 0.1292 0.8576 0.2974 5.3040* 1.1651 -416.6329 
 (0.1048) (0.0532) (0.0274) (0.0789) (0.0808) (0.0657)    

M 1.1762 0.2226 8.6014 0.2367 0.3303     
 (0.3549) (0.0923) (3.4806) (0.1559) (0.1813)     

G 1.3314 -0.3601 0.1886 0.0474 0.9062 0.0425 5.3044* 1.9643 -509.3897 
 (0.1901) (0.0827) (0.3301) (0.0523) (0.0925) (0.0778)    

X 1.7982 -0.1014 0.0062 0.0309 0.9617     
 (0.3479) (0.0882) (0.0392) (0.0313) (0.0306)     

G 1.3195 -0.3334 0.2424 0.0468 0.8948 0.1427 0.2263 0.0097 -508.736 
 (0.1907) (0.0856) (0.4328) (0.0512) (0.1100) (0.0773)    

M 1.1218 0.2731 7.4597 0.2715 0.3660     
 (0.3597) (0.0931) (3.7901) (0.1742) (0.2297)     

X 1.7573 -0.0736 0.0097 0.0314 0.9611 0.1235 1.0843 23.1602** -623.6999 
 (0.3496) (0.0890) (0.0408) (0.0338) (0.0334) (0.0885)    

M 1.0921 0.2867 8.1404 0.2466 0.3454     
 (0.3549) (0.0942) (3.9945) (0.1760) (0.2364)     

GDP 0.8974 -0.0231 0.0060 0.0886 0.9003 0.3567 0.4087 1.0193 -145.8156 
 (0.1489) (0.0979) (0.0231) (0.0767) (0.0807) (0.0600)    



Variable 0π  1π  η  α  β  Correlations LMC IMC Likelihood Value
C 0.8444 0.0548 0.0336 0.0726 0.8733     
 (0.1329) (0.0796) (0.2114) (0.1787) (0.4888)     

C 0.8271 0.0823 0.0432 0.0954 0.8369 0.1821 0.6418 0.7670 -240.6874 
 (0.1006) (0.0809) (0.0636) (0.0935) (0.1625) (0.0776)    

G 1.2889 -0.3141 0.1497 0.0432 0.9188     
 (0.1986) (0.0900) (0.2491) (0.0530) (0.0698)     

C 0.8227 0.0863 0.0597 0.0823 0.8238 -0.0265 0.1543 5.0524* -357.8241 
 (0.1014) (0.0856) (0.0965) (0.1028) (0.2247) (0.0787)    

X 1.7777 -0.0943 -0.0158 0.0292 0.9640     
 (0.3583) (0.0886) (0.1137) (0.0346) (0.0374)     

C 0.8467 0.0826 0.0705 0.1256 0.7696 0.3002 2.2488 1.3017 -351.2096 
 (0.1035) (0.0879) (0.0593) (0.1097) (0.1530) (0.0779)    

M 1.2301 0.2414 8.2578 0.2678 0.3273     
 (0.3613) (0.0963) (3.3091) (0.1723) (0.1767)     

Notes: 1 The LMC is the Lagrange Multiplier statistics for constant correlations and is calculated using Tse’s (2000) test. It is asymptotically distributed as chi-
squared with 1 degree of freedom. 2 The IMC is the Information Matrix statistics for constant correlations and is calculated using Bera and Kim’s (2002) test. It is 
asymptotically distributed as chi-squared with 1 degree of freedom. 3 All standard errors are the heteroskedastic-consistent Bollerslev-Wooldridge standard errors 
computed based on the Quasi-Maximum Likelihood Estimation (QMLE) technique. 4 ** and * indicate statistical significance at the 1% and 5% levels 
respectively. 
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Table 2 reports the test statistics for constant conditional correlations. With the 
exception of the correlation coefficients involving <GDP, M> and, <G, X>, respectively, 
Tse’s LM test statistics on the whole suggest that the conditional correlations among the 
components of real GDP are time-invariant. As for Bera and Kim’s (2002) IM test, the 
null hypothesis of constant conditional correlations cannot be rejected at the 5% level 
except for the cases of <GDP, X>, <X, M> and <C, X>.3 Combining the results of Tse’s 
(2000) LM and Bera and Kim’s (2002) IM test, there are five cases (<GDP, G>, <GDP, 
C>, <G, M>, <C, G> and <C, M>) in which both tests consistently indicate that the 
constant-correlation hypothesis cannot be rejected at the 5% level. Nevertheless, there 
are several cases of inconsistency between the two tests. For instance, albeit Tse’s 
(2000) LM test suggests that the null hypothesis of constant correlations should be 
rejected for <GDP, X> and <G, X>, the IM test indicates otherwise. In contrast, for 
<GDP, X>, <X, M> and <C, X>, the converse is true. Given the inconclusive nature of 
the results in these cases, we refer to the other residual diagnostic tests to examine if the 
model of constant conditional correlations is misspecified. In particular, we will focus 
on the Ljung-Box Q-statistics and the runs test statistics calculated based on the 
cross-product of the standardised residuals from the CC-GARCH(1,1) model. Tables 3-4 
present these tests results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3 Bera and Kim (2002) have alternatively suggested a studentised version of the IM test, which is purported 
to have better finite-sample behaviour compared to the original one. We have calculated these statistics for 
those cases in which the IM test rejects the null hypothesis and found that it cannot be rejected, consistent 
with the LM test. The complete results are available from the authors upon request. 



Table 3.  Summary Statistics of Standardised Residuals of AR(1)-CC-GARCH(1,1) Model: 

 11110
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<GDP, G> <GDP, X> <GDP, M> <G, X> <G, M> Variable 
GDP G GDP X GDP M G X G M 

Panel A: Moments, Maximum, Minimum 
Mean -0.0101 0.0276 0.0076 -0.0067 -0.0055 -0.0234 0.0252 -0.0096 0.0195 -0.0295 
Median -0.0231 -0.0195 -0.0152 -0.0181 -0.0176 0.0454 -0.0247 -0.0274 -0.0189 0.0696 
Maximum 2.2684 2.9140 2.3830 3.0584 2.2574 2.6180 2.9242 2.9672 2.9574 2.6706 
Minimum -2.6616 -2.6566 -2.8429 -2.7889 -2.6181 -3.4301 -2.6533 -2.8033 -2.5565 -3.4068 
Std. Dev. 1.0153 1.0134 1.0290 1.0580 1.0102 0.9999 1.0109 1.0425 1.0100 0.9996 
Skewness -0.1927 0.0763 -0.1433 0.3200 -0.2036 -0.3123 0.0929 0.3277 0.1131 -0.2954 
Kurtosis 2.8538 2.9057 2.8414 3.5564 2.8360 3.7528 2.9172 3.5702 2.9250 3.6858 
Panel B: Jarque-Bera Test 
Jarque-Bera 1.1464 0.2173 0.7243 4.8542 1.3009 6.4592 0.2792 5.0936 0.3835 5.5302 
Panel C: Ljung-Box Q-statistics 
Q-statistic (4) 3.3694 1.7997 3.9969 9.4548 3.5694 5.5095 1.7762 9.3632 1.8627 5.0431 
Q-statistic (8) 9.2719 10.4699 9.9893 11.8101 9.7631 13.0426 10.6126 11.7809 10.5375 11.9015 
Q-statistic (12) 14.7331 19.8086 16.1174 17.4509 15.6190 17.0784 20.0817 17.2115 19.8660 16.2978 
Panel D: McLeod-Li Test 
McLeod-Li (4) 1.6747 1.9968 2.6332 1.3990 1.8370 0.7517 1.9692 1.5917 1.6936 0.9448 
McLeod-Li (8) 2.3902 4.9820 3.7762 3.7660 2.6390 2.0286 4.9333 3.9969 4.5087 2.0718 
McLeod-Li (12) 4.7923 30.2000 6.2108 6.7175 4.8641 4.1608 31.7500 6.6860 31.3658 3.8054 
Panel E: BDS Test 

5.11,3 ==e  -0.4798 0.1300 -0.0149 0.6752 0.1172 -0.0058 0.1646 0.6609 -0.0697 -0.1212 
5.11,5 ==e  0.2809 0.0013 0.8904 1.6266 0.6929 0.4199 0.0705 1.5364 -0.0340 0.2000 
0.11,3 ==e  -0.0588 0.1942 0.2406 0.2526 0.0796 -0.4522 0.5134 0.3013 0.5392 -0.9135 
0.11,5 ==e  0.6342 1.0667 1.0467 1.0985 0.5132 -0.2240 1.3724 1.0918 1.5692 -0.7432 



<GDP, G> <GDP, X> <GDP, M> <G, X> <G, M> Variable 
GDP G GDP X GDP M G X G M 

Panel F: Runs Test 
1R  0.0019 1.4207 0.0019 0.3153 0.0019 -0.1926 1.4208 0.3172 1.4208 0.1976 
2R  -0.8526 0.5611 -1.0609 -0.0713 -1.4503 1.1065 0.5611 0.1904 0.5178 0.8823 
3R  0.3008 -0.1775 -0.2927 -0.9465 -0.3982 0.3935 -0.7646 -0.7869 -0.0575 0.3935 

Panel G: Ljung-Box Q-statistics (Cross Product) 
4 lags 5.1545  3.9904  1.7969  9.0141  1.6605  
8 lags 15.1665  7.0383  8.0105  13.2256  6.2727  
12 lags 21.5595  23.8878  10.2833  18.4233  7.9739  
Panel H: Runs Test (Cross Product) 

1R  0.0961  -0.1745  0.7108  0.6818  1.0809  
2R  0.5379  -0.0350  0.3699  -0.1537  0.1921  
3R  1.1432  -1.3686  -0.1924  -0.1662  -0.5883  

Notes: 1 The Jarque-Bera statistics follows the chi-square distribution with 1 degree of freedom. 2 For the Ljung-Box Q-statistics and the McLeod-Li test statistics, 
the number in brackets refers to the number of lags. 3 For the BDS Test, e represents the embedding dimension whereas l represents the distance between pairs of 
consecutive observations, measured as a multiple of the standard deviation of the series. Under the null hypothesis of independence, the test statistic is 
asymptotically distributed as standard normal. 4 For the Runs Test, Ri for i = 1, 2, 3 denote the runs tests of the series Rt, |Rt|, and Rt

2 respectively. Under the null 
hypothesis that successive observations in the series are independent, the test statistic is asymptotically standard normal. 5 The Ljung-Box Q-statistics (Cross 
Product) refers to the Q-statistic applied to the cross-product of the standardised residuals. 4, 8, and 12 lags are used. 6 The Runs Test (Cross Product) refers to the 
runs test applied to the cross-product of the standardised residuals. Ri for i = 1, 2, 3 denote the runs tests of the series Rt, |Rt|, and Rt

2 respectively. 
 
 
 
 
 
 
 



Table 4.  Summary Statistics of Standardised Residuals of AR(1)-CC-GARCH(1,1) Model: 

11110
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<X, M> <GDP, C> <C, G> <C, X> <C, M> Variable 
X M GDP C C G C X C M 

Panel A: Moments, Maximum, Minimum 
Mean -0.0101 -0.0264 0.0034 -0.0118 -0.0189 0.0242 -0.0188 -0.0076 -0.0412 -0.0425 
Median -0.0115 0.0822 0.0013 0.0754 0.0467 -0.0008 0.0458 -0.0189 0.0263 0.0269 
Maximum 2.9863 2.6757 2.1935 2.7045 2.6962 2.9555 2.7575 2.9828 2.6876 2.6182 
Minimum -2.8311 -3.3797 -2.6945 -2.6742 -2.6457 -2.5538 -2.6420 -2.7933 -2.7064 -3.4185 
Std. Dev. 1.0465 1.0003 1.0171 1.0190 1.0199 1.0128 1.0186 1.0432 1.0147 0.9986 
Skewness 0.3231 -0.2818 -0.2061 -0.1693 -0.1415 0.1048 -0.1411 0.3272 -0.1159 -0.2985 
Kurtosis 3.5750 3.6756 2.8077 3.0713 3.0508 2.9185 3.0921 3.5715 3.0822 3.7040 
Panel B: Jarque-Bera Test 
Jarque-Bera 5.0507 5.2252 1.3967 0.8083 0.5580 0.3412 0.5946 5.0959 0.4080 5.7510 
Panel C: Ljung-Box Q-statistics 
Q-statistic (4) 9.1974 5.0491 4.0750 3.1261 3.1230 2.0758 2.9226 9.3286 3.1754 5.2832 
Q-statistic (8) 11.6013 11.6573 10.0353 5.6736 5.7623 10.6129 5.5363 11.7249 5.9477 12.6011 
Q-statistic (12) 17.1501 16.2199 16.6665 6.4538 6.6000 19.5699 6.3567 17.2362 6.8786 16.7429 
Panel D: McLeod-Li Test 
McLeod-Li (4) 1.6233 0.9117 3.3253 4.3323 3.5354 1.8486 3.9185 1.5664 3.0499 0.8585 
McLeod-Li (8) 3.9860 2.0245 4.5204 6.2180 5.8289 4.5679 5.8453 3.9467 5.1419 2.0351 
McLeod-Li (12) 6.4702 3.7551 6.3711 12.7166 12.5383 29.8139 12.4473 6.6996 12.1675 3.8336 
Panel E: BDS Test 

5.11,3 ==e  0.6568 0.0267 0.5482 -0.2860 -0.4631 -0.0438 -0.1932 0.6686 -0.5660 -0.0953 
5.11,5 ==e  1.5496 0.3826 1.3368 0.5544 0.3600 -0.0082 0.6952 1.5131 0.1586 0.3358 
0.11,3 ==e  0.2285 -0.6659 0.4656 -0.2198 -0.6906 0.2223 -0.4416 0.2593 -0.6770 -0.7508 
0.11,5 ==e  0.7396 -0.5540 1.3627 0.4018 -0.0549 1.4406 0.0259 0.9691 -0.4785 -0.4719 



<X, M> <GDP, C> <C, G> <C, X> <C, M> Variable 
X M GDP C C G C X C M 

Panel F: Runs Test 
1R  0.3153 0.1976 0.0019 -1.0962 -1.0962 1.4208 -0.7717 0.3153 -1.0963 -0.1596 
2R  0.9183 0.2399 -1.5056 -0.5261 -0.5261 0.5178 -0.5261 -0.0713 0.0682 1.3085 
3R  -0.6183 0.3935 -0.6426 -0.1051 0.0520 0.3446 -0.3311 -1.3347 -0.1701 0.3935 

Panel G: Ljung-Box Q-statistics (Cross Product) 
4 lags 2.7808  2.2470  2.3148  3.5035  5.9051  
8 lags 5.1641  6.5143  5.1583  8.5934  9.5045  
12 lags 6.3327  8.6399  8.3915  14.0112  16.4491  
Panel H: Runs Test (Cross Product) 

1R  -0.5631  -1.4464  -0.6333  -0.9006  1.0175  
2R  2.1656  -2.1023  0.1775  0.9944  0.6062  
3R  0.5703  -3.1177  -0.1736  0.3724  0.5536  

Notes: 1 The Jarque-Bera statistics follows the chi-square distribution with 1 degree of freedom. 2 For the Ljung-Box Q-statistics and the McLeod-Li test statistics, 
the number in brackets refers to the number of lags. 3 For the BDS Test, e represents the embedding dimension whereas l represents the distance between pairs of 
consecutive observations, measured as a multiple of the standard deviation of the series. Under the null hypothesis of independence, the test statistic is 
asymptotically distributed as standard normal. 4 For the Runs Test, Ri for i = 1, 2, 3 denote the runs tests of the series Rt, |Rt|, and Rt

2 respectively. Under the null 
hypothesis that successive observations in the series are independent, the test statistic is asymptotically standard normal. 5 The Ljung-Box Q-statistics (Cross 
Product) refers to the Q-statistic applied to the cross-product of the standardised residuals. 4, 8, and 12 lags are used. 6 The Runs Test (Cross Product) refers to the 
runs test applied to the cross-product of the standardised residuals. Ri for i = 1, 2, 3 denote the runs tests of the series Rt, |Rt|, and Rt

2 respectively. 
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As shown in Tables 3 and 4 , the Ljung-Box Q-statistics for the cross-product of the 
standardised residuals in the models involving <GDP, M> and <G, X> indicate that the 
residuals are serially uncorrelated. This is corroborated by the nonparametric runs test. 
Apparently, the constant correlation model is adequately specified in these cases. On the 
other hand, for the models involving <GDP, X>, <X, M> and <C, X>, most Ljung-Box 
Q-statistics also indicate the absence of serial correlation. The only exception is the 
Ljung-Box Q-statistic at 12 lags for <GDP, X>, which is significant at the 5% level. 
Otherwise, the diagnostics suggest that the GARCH models assuming constant 
conditional correlation are adequately specified. In sum, the evidence demonstrates that 
the correlations among the shocks to the real GDP components are time-invariant. 

It is interesting to note that the correlations among the shock to real output and 
expenditure components are quite low, usually of the order between 0.2 and 0.3. One 
possible conjecture for the low correlations between demand and real output shocks 
could be due to the relative predominance of supply-side shocks. This finding is 
consistent with Cashin and Ouliaris (2001), who observes that the Australian real output 
is predominantly subjected to the supply-side shocks in the post-war period from 1959 to 
2000. 

 



Table 5.  Estimation Results of AR(1)-CC-QGARCH(1,1) Model:  11
2

1110 ; −−−− +++=++= ttttttt hhyy γεβαεηεππ

Variable 0π  1π  η  α  β  γ  Correlations Likelihood Value 
GDP 0.9166 -0.0468 0.0204 0.1534 0.8422 -0.1403 0.4380 -337.254 

 (0.1068) (0.0784) (0.0333) (0.0960) (0.0792) (0.2771) (0.0563)  
I 0.9715 -0.0690 4.9774 0.0476 0.3331 -0.7154   
 (0.2637) (0.0867) (2.5046) (0.0995) (0.3942) (0.3390)   

GDP 0.8605 0.0067 0.0311 0.1598 0.8300 -0.1582 0.2854 -414.537 
 (1.5159) (1.4714) (0.0350) (0.0989) (0.0720) (0.7057) (0.1116)  

M 1.0628 0.2205 9.2316 0.2566 0.2907 -1.0125   
 (0.5209) (0.1709) (3.8223) (0.1634) (0.2228) (0.9011)   
I 0.9028 0.0050 4.8392 0.0581 0.3481 -0.8632 0.0981 -440.173 
 (0.2452) (0.0373) (1.8241) (0.0876) (0.2731) (0.3329) (0.0816)  

G 1.3503 -0.3612 0.2513 0.0526 0.8868 0.0656   
 (0.1991) (0.0884) (0.6321) (0.0548) (0.1622) (0.1303)   
I 0.9621 -0.0502 5.6597 0.0609 0.2456 -0.9019 0.3259 -546.627 
 (0.2610) (0.0828) (1.7857) (0.0923) (0.2611) (0.3383) (0.0738)  

M 1.0824 0.2279 8.5636 0.3166 0.2900 -1.1573   
 (0.3669) (0.0917) (3.1438) (0.1619) (0.1415) (1.0546)   

C 0.8393 0.0796 0.0852 0.1272 0.7465 -0.0325 0.3189 -349.032 
 (0.1026) (0.0841) (0.0902) (0.0932) (0.1656) (0.1001) (0.0790)  

M 1.0962 0.2260 9.6871 0.2795 0.2642 -1.4554   
 (0.3822) (0.0881) (2.7752) (0.1488) (0.1059) (0.9547)   

Note: All standard errors are the heteroskedastic-consistent Bollerslev-Wooldridge standard errors computed based on the Quasi-Maximum Likelihood 
Estimation (QMLE) technique. 
 
 
 
 



Table 6.  Estimation Results of AR(1)-CC-LGARCH(1,1) Model: 1
2

11110 )(; −−−− +−+=++= ttttttt hhyy βγεεαηεππ  

Variable 0π  1π  η  α  β  γ  Correlations Likelihood Value
GDP 0.8290 0.0410 0.0144 0.1331 0.8550 0.2026 0.1721 -305.387 

 (0.1315) (0.0904) (0.0229) (0.0683) (0.0695) (0.1578) (0.0747)  
G 1.3109 -0.3524 0.1125 0.0523 0.9176 -0.0488   
 (0.1953) (0.0850) (0.2540) (0.0584) (0.0812) (0.2616)   

GDP 0.8597 0.0066 0.0163 0.1290 0.8584 0.1360 0.2887 -415.671 
 (0.1019) (0.0482) (0.0237) (0.0655) (0.0674) (0.1389) (0.0632)  

M 1.1170 0.2163 9.4193 0.2428 0.2693 0.2551   
 (0.3593) (0.0874) (2.8615) (0.1462) (0.1282) (0.2547)   

G 1.3117 -0.3307 0.2475 0.0469 0.8937 0.0111 0.1506 -507.89 
 (0.0911) (0.0662) (0.0617) (0.0448) (0.0435) (0.1895) (0.0691)  

M 1.0773 0.2587 8.5082 0.2941 0.2812 0.2758   
 (0.0724) (0.0692) (0.0100) (0.0961) (0.0612) (0.0966)   

Note: See Note to table 5. 
 
 

Table 7.  Estimation Results of AR(1)-CC-TGARCH(1,1) Model: 111110 )(; −−−− +−+=++= ttttttt hhyy βγεεαηεππ  

Variable 0π  1π  η  α  β  γ  Correlations Likelihood Value
GDP 0.8164 0.0518 0.0129 0.1332 0.8801 0.1981 0.1549 -306.28 

 (0.0038) (0.0863) (0.0410) (0.1036) (0.1077) (0.2551) (0.0804)  
G 1.3906 -0.3595 1.9249 0.0846 0.0078 0.3342   
 (0.1871) (0.0765) (0.2384) (0.0832) (0.0610) (0.6025)   

G 1.4230 -0.3678 1.8886 0.0928 0.0185 0.2598 0.0574 -508.70 
 (0.1073) (0.0629) (0.0300) (0.0734) (0.0793) (0.0561) (0.0692)  

X 1.9698 -0.0856 0.0450 0.0819 0.9230 -0.1231   
 (0.1150) (0.0716) (0.0797) (0.0784) (0.0707) (0.1255)   



η γ  Correlations Likelihood Value βVariable 0π  1π  α 

G 1.3630 -0.3330 1.7925 0.0923 0.0655 0.2339 0.1545 -507.47 
 (0.1833) (0.0804) (0.7772) (0.0839) (0.3356) (0.6144) (0.0811)  

M 0.8983 0.2943 1.7106 0.2448 0.4242 0.4423   
 (0.4102) (0.0978) (0.8098) (0.1194) (0.2126) (0.3188)   

GDP 0.8290 0.0235 0.0133 0.1244 0.8869 0.1333 0.2826 -415.94 
 (0.1296) (0.0927) (0.0339) (0.0816) (0.0854) (0.2152) (0.0633)  

M 0.9613 0.2410 1.9154 0.2021 0.4056 0.3914   
 (0.3967) (0.0903) (0.9046) (0.1069) (0.2130) (0.3906)   

X 1.8845 -0.0549 0.0281 0.0785 0.9296 -0.1946 0.1455 -621.53 
 (0.3782) (0.0815) (0.2133) (0.1885) (0.1911) (0.9937) (0.0867)  

M 0.8969 0.3113 1.8682 0.2341 0.3928 0.3963   
 (0.4076) (0.0994) (0.7867) (0.1221) (0.2069) (0.3451)   

Note: See Note to table 5. 
 
 

Table 8.  Estimation Results of CC-APARCH(1,1) Model: δδδ βγεεαηεππ 111110 )(; −−−− +−+=++= ttttttt hhyy  

Variable 0π  1π  η  α  β  γ  δ  Correlations Likelihood Value
GDP 0.8637 0.0062 0.0124 0.0739 0.8147 0.1272 4.0089 0.2819 -415.296 

 (1.3016) (1.2967) (0.0269) (0.1180) (0.1508) (0.6800) (2.6402) (0.1263)  
M 1.0538 0.2289 3.8836 0.2297 0.3348 0.3198 1.4280   
 (0.5632) (0.2108) (6.2196) (0.1461) (0.2112) (0.5535) (1.0436)   

Note: See Note to table 5. 
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Tables 5-8 report the estimation results for asymmetric conditional volatility based 
on the four bivariate asymmetric GARCH models as specified in equations (23) and (24). 
The estimated values of the asymmetry parameter γ  for Gross Domestic Product 
(GDP), Government Expenditure (G), Consumption (C), Exports (X), and Imports (M) 
are generally insignificant at the 5% level. Our results indicate that the Australian 
National Accounts do not exhibit highly significant asymmetric conditional volatility. 
This is similar to the findings of several researchers on asymmetries in the Australian 
business cycle, such as Olekalns (1998), Cashin and Ouliaris (2001), and Bodman and 
Crosby (2002). In particular, Olekalns (1998) tests for the presence of asymmetric 
steepness and deepness in various Australian macroeconomic variables, such as Gross 
Non-farm Domestic Product and Private Consumption Spending, and concludes that 
these variables do not display any detectable asymmetries. Similarly, Cashin and 
Ouliaris (2001) note that in terms of duration and amplitude, the Australian growth cycle 
(periods of above-trend and below-trend rates of economic growth) is relatively 
symmetric. Bodman and Crosby (2002) find that, unlike recent evidence for the US and 
Canada, the Australian GDP growth does not manifest asymmetry in the responses of 
output growth to positive and negative shocks. Apparently, the absence of asymmetry 
applies not only to the conditional mean, but also to the conditional variance. 

The only exception to the general absence of asymmetric volatility is the investment 
component (I). As shown in Table 5, the estimated value of coefficient of asymmetry for the 
investment component (I) from the CC-QGARCH model is negative and significant at the 
5% level. This suggests that negative shocks to the investment variable engender higher 
levels of volatility in future periods compared with positive shocks of the same magnitude. 

Moreover, several studies find that volatility is higher during the recessionary phase 
of the business cycle (see French and Sichel (1993) and Ho and Tsui (2001, 2003 and 
2004)). In particular, French and Sichel (1993) note that volatility asymmetry is 
concentrated in the cyclically sensitive sectors of the US economy, such as the 
investment components including non-residential structures, residential structures and 
inventories. Additionally Ho and Tsui (2001, 2003 and 2004) find support for 
association of volatility asymmetry with the contractionary phase in output for the 
United States, Canada and greater China by using exponential GARCH models. In the 
case of Australia, we notice that even though the overall statistical evidence for 
asymmetric volatility is weak, the conditional volatility of GDP and its components is 
usually higher around periods of recession (business cycle troughs). This is corroborated 
by the estimated business cycle dates published by various sources. Figures 1-2 highlight 
the recessionary phase of the Australian business cycles4, alongside with the estimated 

 

 

4 It should be noted that this is mainly qualitative evidence. In fact, the estimated dates of the peaks and 
troughs published by various institutions do differ slightly. As such, we use the dates of troughs estimated by 
Economic Cycle Research Institute (ECRI), which are generally consistent with other sources such as 
Melbourne Institute and CIBCR. The ECRI data set is mounted on webpage http://www.businesscycle.com/ 
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values of conditional standard deviations of GDP from the CC-GARCH and 
CC-QGARCH models. Our findings are robust to different specifications of the 
conditional variance equation. 
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        Figure 1.  Conditional Volatility of GDP (CC-GARCH) 
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    Figure 2.  Conditional Volatility of GDP (CC-QGARCH) 

 

 
pdfs/cycles/encrypted/08212007_bc_x_free.pdf. Further details are available from the authors upon request. 
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We mention in passing that with the exception of a few cases of significant test 
statistics, most diagnostic checks suggest that most of the constant-correlation asymmetric 
GARCH models are adequately specified. Both parametric and non-parametric tests 
generally indicate the absence of serial correlation in the standardised residuals. 
Regarding the Jarque-Bera test for normality, the null hypothesis of conditional 
normality cannot be rejected at the 5% level for almost all models. The test results are 
available from the authors upon request. 

 
 

5.  CONCLUSION 
 
In this paper we have employed the bivariate asymmetric GARCH models to 

examine the conditional volatility of the Australian real GDP and expenditure 
components using quarterly data set covering the period from 1960Q1 to 2000Q4. We 
first test the plausibility of the constant-correlation assumption by employing Tse’s 
(2000) LM test and Bera and Kim’s (2002) IM test. The results indicate that the 
correlations among the shocks to real GDP and its various expenditure components are 
invariant over time, and these shocks are not highly correlated with one another. It 
seems that the constant-correlation GARCH model is adequately specified. We then 
estimate the four bivariate asymmetric GARCH specifications to determine the existence 
of volatility asymmetry in the Australian business cycle. Some weak evidence is found 
for the asymmetric conditional volatility in the growth rates of the Australian real GDP 
and the other components with the exception of gross fixed capital formation. Despite 
the weak evidence of asymmetric volatility, we notice that higher volatility is generally 
associated with the contractionary phase of the Australian business cycle. The finding is 
robust to alternative specifications of the conditional variance equation. 

Our findings have important implications for macroeconomic policy and forecasting 
for business cycle. First, models that explicitly include the variance of income or activity 
should incorporate time-varying variance of income and activity over the business cycle. 
Second, macroeconomic forecasting of Australia should take into consideration the 
possibility of time-varying volatility to develop more realistic confidence intervals of 
forecasts. 
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