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A unique Gini coefficient can be obtained from a given Lorenz
curve, but transformation from the given ‘Gini coefficient to the
Lorenz curve is not unique. A class of Lorenz curves will produce the
same Gini coefficient so that measuring income inequality with a Ginj
‘coefficient and interpreting its result should be done with caution. In
this paper, by expanding the Lorenz curve in 4 power series expan-
sion, we show that knowledge of the Gini coefficient is equivalent to
information of the zeroth order integration of the Lorenz curve.
Therefore, the difference in conveyed information between the Gini
coefficient and the Lorenz curve is that the Lorenz curve gives infor-
mation of first, second, and higher order integration of the Lorenz
curve while the Gini coefficient does not. If we expand the Lorenz
curve in a Legendre series, then knowledge of the Gini coefficient is
equivalent to the zeroth order coefficient of the Legendre series. If ex-
tra information is known, such as the first order integration of the
Lorenz curve, then the ambiguity in constructing the Lorenz curve
can be partially removed. We apply our results to measure income in-
equality in Korea for 1988, and discuss inaceurate interpretation
associated with the Gini coefficient. :

L. Introduction

There are two basic issues in studies on income distribution. The
first is search for causes of income inequality. Observed size distribu-
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tion of income depends on individual capability and on the social con-
figuration of any given economy. It might be thought that measurable
proxies for capability should be normally distributed, while clearly em-
pirical income graduations are J-shaped distributions with non-zero
skewness and kurtosis, cf. Sahota (1978), Creedy (1985), and Ryu and
Slottje (1993) for discussion of this work. The second issue is related
with construction of a Lorenz curve and search for the functional form
of the Lorenz curve and a most widely used measure of income ine-
quality.

In this paper, we focus on the second issue. In principle, if there are
T income samples independently observed from an identical distribu-
tion, then there are various way to find the underlying probability den-
sity function. See for example, Nadayara’s (1965) non-parametric den-
sity estimation, orthonormal basis estimation method (Prakasa Rao
(1983)), maximum entropy estimation method (Zellner and Highfield
(1988) and Ryu (1993)). Once the dengity function is approximated, we
no longer need any more information. We can derive a Lorenz curve, a
Gini coefficient, or any other income inequality measure using the
approximated density function.

However, the tradition is not to derive the underlying density func-
tion, but to represent income inequality with a single summary
measure. As a result, many different income distributions might yield
the same summary measure. For example, when two Lorenz curves in-
tersect, it is not ciear that improvement in the summary measure is im-
provement in income inequality. It is possible that the lowest quintile
of a society with higher Gini coefficient can receive more accumulated
income compared to the lowest quintile of another society with lower
Gini coefficient. Comparing these two societies, improvement in Gini
coefficient may or may not be a desirable change for the economy.

We shall introduce a power series expansion for the Lorenz curve
because the required convexity condition of the Lorenz curve can be
established with ease, and graphical comparison of various Lorenz
curves are relatively easy. As an alternative way to expand the Lorenz
curve in a series, we can introduce a Legendre polynomial series. The
Lorenz curve i3 decomposed into several orthogonal Legendre com-
ponents, of which the zeroth order coefficient corresponds to the Gini
coefficient, The first order component corresponds to redistribution of
income between the individuals which is orthogonal to the lower order
component. The Gini coefficient specifies the area under the Lorenz
curve so that it can be considered as a normalization constant, How-

ever the mean of Lorenz curve, which can be derived from the Lorenz
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curve, describes the degree of fat tailedness of J shaped curve. A
related study can be found in Ryu and Slottje (1992b).

In section two we discuss the theoretical part of this paper. We in-
troduce the power series expansion and the Legendre series expansion
for the Lorenz curves, We discuss the relationship between the Lorenz
curve and Gini coefficient. In section three we actually perform ex-

periments using measured family income observations of Korea. It is
followed by a concluding remarks.

II. The Theory

There are two fundamental issues related with parametric represen-
tation of the Lorenz curve. Why should we care for the parametric
form of the Lorenz curve when the empirical Lorenz curve already
exist? By approximating the empirical Lorenz curve with some para-
metric functional form and by introducing the estimated parameters
into the approximated form, the best we can hope is that the approxi-
mated Lorenz curve will be very closely located to the empirical Lorenz
curve. However, the justification for using a parametric functional
form comes from parsimony of representation, Suppose we have a
large number of sample observations, and we want to report the
Lorenz curve to another person. One possible way is to report all the
values at each point. This is very difficult but accurate way. Another
way is to represent the Lorenz curve with a simple parametric func-
tional form and report the parameter values. The trade off is that we
are losing some information by approximating the empirical Lorenz
curve with certain functional form. However the positive aspect is that
we can easily reproduce the reported result,

The second way requires a good simple parametric functional form
to approximate the true unknown Lorenz curve. Basmann, Hayes,
Johnson, and Slottje (1990) established a nonlinear functional form
while Ryu and Slottje (1992a) suggested expansion of the income func-
tion in an exponential series so that the Lorenz curve can be repre-
sented as an integration of this income function. However, in this
paper, we directly represent the Lorenz curve in a power series expan-
sion or in a Legendre series expansion because we intend to demon-
strate some relationship between the Gini coefficient and the Lorenz
curve. See Choo (1982) for related discussion.
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A. Power Series Expansidn of the Lorenz Curve
An N order power series expansion is defined as
@2.1) Lyd=a +az+azi+ +ayz’

where z=(0, 1) is a population variable. Since the true Lorenz curve is_
a continuous smooth function of z, L,(z) converges in L2 to the
unknown true Lorenz curve when N goes to infinity and the para-
meters were chosen properly. Here we are restricting the functional
form of the Lorenz curve to a class of the power series, but such
restriction will not produce any finite departure because a power series
expansion is a complete set. See Appendix for definition of com-
pleteness.

Let us define the following power integration of the Lorenz curve,
@2) = 2 Ly@dz=]] 2'lag+ a2+ a2+ + Nz

If L\{x) is known, we can COmMpUute yg,....kys--- and alternatively if
Hos--» Wy IS given we can compute 3, ay,..., 3y

Now let us explain the relationship between the Gini coefficient and
the Lorenz curve. Once the Lorenz curve is known, computation of the
Gini coefficient is immediate.

@3) Gini=1-2[ L)dz=1 - 2fjLy(D)dz=1 - 2

where L(z) is the trué unknown Lorenz curve and L,(z) is the N order
approximation. As the size of series becomes large, the difference be-
tween L(z) and L,(z) becomes negligible. The knowledge of Gini is
eguivalent to the knowledge of the zeroth integration of the Lorenz
curve, in this case it is important to note that no more information is
provided by the Lorenz curve so that a class of Lorenz curves cor-
responding to different values of ,,..., py will produce the same Gini
coefficient. Since the Lorenz curve is a convex function, and we defin-
ed z.r.,, w1th (2 2), there are certain rules connecting the values of p,,

Hyses
However, search for the restricting conditions in g, yy,..., wy Space

seems to be difficult. In the following, we impose a sufficient con-
dition for convexity of the Lorenz curve in the parameter space.

L,(2) is a covex function if a,>0,...,2y,>0



LORENZ CURVES AND DOMINANCE EFFECT 51

We provide several examples assuming the Gini coefficient is 0.25. In
Example 4, we relax this restriction with 0 <Gini<0.5.

Example 1: Suppose L, (z)= 8,+a,z and we do not impose the
boundary conditions L,(0)=0 and L;(1)=1. One extreme case is 25%
of the population has no income and the remaining 75% of the
population has equal share of the total income. This is ploited in Fig,
1a. Another extreme case is when 75% of the total income is uniformly
distributed to everyone and the remaining 25% goes to the richest in-
dividual. This is plotted in Fig. 1b. From the knowledge of the Gini
coefficient, we can not distinguish Fig. 1a from Fig. 1b. However, the
first moment of Lorenz curve p.lsjf) zL(z)dz will be bigger for the
distribution of Fig. 1b. '

Example 2: Suppose L z)=ay+a,z+a,22 and we impose the
boundary conditions L,(0)=0 and L,(1)=1 and convexity conditions,
8, 8>0. We have three equations and three variables. Thus the
Lorenz curve is

._Lz(z) =0.25z+0.7522

This curve is plotted in Fig. lc. We assumed the Gini coefficient
G=0.25 and derived a convex L,(z), but the Gini coefficient should
not be too large if we want to derive a convex Lorenz curve. For exam-
ple, if G=0.5, a convex Lorenz curve can not be established which
satisfies both the boundary and convexity conditions. From L{0)=0,
we get a,=0, from L{l)=1, we get a+a,=1. From L'(z)=
a,+2a,2>>0, we get L'(0)=a,>0. Also note L"(z)=2a,>0. From the
definition of py= [jL(z)dz=a,/2+a,/3=(1-G)/2. We get
0<a,(=3Gini) <1. Then Gini coefficient should be less than one third
if the Lorenz curve is to satisfy the convexity condition and the given
functional form.

Examples 3: L,(Z)=a,+a,z+a,22+a,7>. Now impose the boun-
dary conditions L;(0)=0 and L,(1)=1, the Gini restriction (2.3) and
convexity conditions, a,, a,, 8,2>0. We have three equations and four
variables. Let Gini=0,25,

Ly(0)=2,=0
Ly(l)=a,+a,+a,=1

—L@dz=t+ 2 %
o= loLy(2)dz= 3 T3t
_1-Gini _

3
2 8
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Removing a, and imposing positivity of a, and a,,
0.25<a,<0.5 a,=15-3a a,=1-a -a,

If a,=0.25, thena2—0 75 and a,=0, If a;=0.5, then a,=0 and 3=
0.5. This is plotted in Fig. 1d (L(z)=0.52+0. Sz3)

Example 4: Let 0<G<0.5 and L(z)=3a,+a;z+a,z2+a;z® with
boundary conditions 1{0)=0 and L(1)=1 and convexity conditions,
a,, a,, 8,2 0. We have three equations and five variables {(a,, a,, a,, a,,

G).
LiO)=
Li)=a +a,+a,=

t 2 &
joL(z)dz_T -+ =01-0)12

Therefore

1-3G<a, <1-2G, a,=3(1-2a,-2G),
ay=1-2a,-2

Plotting the corresponding Lorenz curves will be difficult because we
have two degree of freedom (five variables with three equations).

In this subsection, we have expanded the Lorenz curve with a
polynomial series. We have seen that information contained with the
Gini coefficient is equivalent to the zeroth order moment of the Lorenz
curve,

However, it is important to note that we are facing a potentially
crucial problem in this method. Suppose we are given with a large
number of sample observations of individual income. From this, we
can calculate the empirical Lorenz curve and the Gini coefficient.
However, if we approximate the above empirical Lorenz curve with a
lower order polynomial series, for example, Ly(z)=2,+ az+a,22 +
2,73, the Gini coefficient derived by 1 - 2 {L;(2) will be different from
the sample estimated Gini coefficient. Since L, is just an approxima-
tion of the true unknown Lorenz curve, and that | Ly(2)dz # { L(z)dz.
The justification for using a complete set is that when the size of series
is very large, the difference between the approximated function and
the unknown true function can be made as small as possible. But for a
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finite sample and finite series expansion, approximation can be very
rough. '

Furthermore, when we increase the size of the series, the estimated
parameters will fluctuate so that the estimated Gini coefficient =
1 —2{ L y(@)dz will also fluctuate. Therefore, our claim that we can
approximate the Lorenz curve with a polynomial series expansion and
the Gini coefficient can be obtained from the zeroth order integral may
not be very meaningful if the calculated Gini coefficient depends on
the size of series expansion of Ln(z). In the following subsection, we
introduce a Legendre series where the orthogonality condition of the
given sequences will provide stable parameter estimation and stable
Gini values when we increase the size of series.

B. Legendre Polynomial Series Expansion of the Lorenz Curve

The definition of the Legendre polynomial series is will explained
in Arfken (1985), but a brief review for the concept of the orthonormal
basis and completeness is provided in the Appendix. Originally, the
Legendre series is defined on a domain -1<x<+1, but for conve-
nience of calculation, we made linear transformation for the original
Lorenz curves with 0<z<1 such that we have )

2.4 Py@d=1
P (0=~32z-1)
Pz} = J36z2 -6z +1)
Py2)= JT(202% 302 + 122 1
p,(z) = O(102* ~ 1402 + 9072 —20z+ 1)

These functions are plotted in Fig. 2a—Fig. 2e. The orthonormality
condition of the Legendre condition means

2.5 1 Pa@PDdz=8y,

where 3,,,=1ifm=n and zero otherwise. The boundary conditions of
the Legendre series are :
PO)=1 P1)=1

PO=-3 P (=3
P,0) =5 P, =3

P,0)= T Py =vT
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Now expand the Lorenz curve with a Legendre series,
(2.6) Ry(D)=23,Py(2)+a,P,(z)+a,Py(z) + - +ayP(D)
The Gini coefficient determines the zeroth coefficient, a,.
2.7  a,=(1—G)/2 because {l(z)dz={ R (z)dz=a,

There is a big difference between (2.3) and (2.7). In (2.3), the
calculated Gini coefficient changes its value when we increase the size
of series expansion N, but noet in (2.7). The orthogonality condition of
the Legendre series (2.5) provides such convenience so that the zeroth
decomposition of the Lorenz curve with the Legendre series will pro-
vide equivalent information to the Gini coefficient.

A Once the Gini coefficient is given, a primitive Lorenz curve can be
obtained by imposing the two boundary conditions R(0)=0 and
R(1)=1, then

R,(2) = 8,Py(2) + 2, P, (2) + 2,P,(2)

can be computed using the boundary conditions

1 G
3.0=(1 - G)IZ, a1=ﬁ, and a2=ﬁ

2.8) Ry®= =8 )Po(z) + 5= Pi@+ = P2

«/_ x/““

or introducing the Legendre functions stated in (2.4).
R,(2)=3Gz2+(1 - 3G)z
Therefore R,(z) is a convez function if 0<G<1/3. This is the same

restriction stated in example 2.

Now let us introduce a third order Legendre series for the Lorenz
curve. For given G, the basic functional form for our Lorenz curve is

2.9y  Ry(@)=a,Pa)+a,P(2)+a,Py2) + a3P3(z)

©.5-+3a))
7

—(-— VPy(2) + a,P,(2) + 5—= Py(z) +—————"-P4(2)

s

Since we have four variables a,, a;, a,, a, and three equation



LORENZ CURVES AND DOMINANCE EFFECT 57

B[ =(1-G)/2, R,;(0)=0, and R;(1)=1, we represented (2.9) as a func-
tion of a,.

We have described the Lorenz curve for the given information of
the Gini coefficient and the boundary conditions. Though we have
derived the second order Legendre series (2.8) and the third order
Legendre series (2.9), we can not 80 to any higher order Legendre
series uniless more information about the shape of the Lorenz curve is

- given,

C. Parametric Approximation of Empirical Lorenz Curve

In the subsection, we discuss how to approximate the empirical
Lorenz curve with a Legendre series, Here we assume knowledge of the
empirical Lorenz curve at all points but we shall not impose the bound-
ary condition for convenience of exposition.

(2.10) Lz= a,Py(z) + 4,P(z2) + P, () + -+ aP(z)+e
There are other well known Lorenz curves, Basmann, Hayes, Johnson,

and Siottje (1990) approximated the Lorenz curve with the following
nonlinear form,

L@ =z*bexp[-g(1 - 22 - h1 - z)+pl

Z=F(X)=[x(x")dx’ and we define the inverse distribution function as
F"(w)=infx(x; F(x)>w). The Lorenz curve is defined as

Lz=L i ; Fl(w)dw for ze(0;1)
B

where p= KXf(x)dx, As a particular case, Ryu and Slottje (1992a)
introduced an exponential series for the inverse function,

iz =T;~I§exp[[§0 +Bw+Bwe+ Bwildw for ze (0,1)
As an alternative way to represent the Lorenz curve, this paper in-

troduced a serieg expansion for the Lorenz curve stated in (2.10). To
estimate the parameters of (2.10), define a matrix
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(2.11) Py(z) Pi(z) .- PuMz)
Pyz) Pyz) .- Py(@)

Py(zp) Pl'(zT) PN(Z'T)

where z,, Zy,...Zr= 1/T, 2/T,..., 1. The orthogonality condition 2.5
produces

1 1 7
= XN p ZP,@)P,(2)*] 'P @ (2)d2=5,,

where = means approximately equal to and 3,,, is zero if m#n and one
if m=n. Therefore, the least squares parameter estimation method of
(2.10) will be

(2.12) &,= (X'X)-lxt(z)-:—;— élp,,(z,)i;(z,)

where ﬁ(z,) is the empirical Lorenz curve.

It is important to note that parameter estimation does not depend
on the size of the series expansion. The parameters estimated by (2.12)
is uniquely determined by the given empirical Lorez curve and the
chosen Legendre series, We are decomposing the Lorenz curve in a se-
quence of Legendre series and each term will project out its component
from the Lorenz curve and the orthogonality condition guarantees in-
dependence of each projection. As a particular example of this ortho-
gonality condition, we have indicated that the Gini coefficient which
can be obtained from a;=(1 - G)/2 does not depend on the size of the
chosen series.

To summarize this section, we expanded the Lorenz curve in a sim-
ple polynomial series and derived the relationship between the Gini
coefficient and the Lorenz curve. However, such relationship depend-
ed on the size of the chosen series so that we introduced a Legendre
series where estimated parameters does not depend on the size of the
series. To derive a Lorenz curve from the given Gini coefficient, we
can not include many terms inside the series because there is no way to
estimate the parameters. However, if we have access to the empirical
Lorenz curve, then we can approximate the unknown Lorenz curve
with a Legendre series which asymptotically converges (o the unknown
true Lorenz curve as we increase the size of the series.
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Ik Application

We want to compare the performance of various approaches. We
applied Korean cross sectional family income data for 1988. The Korea
Development Institute (KDI) surveyed total household income for
5,111 families (excluding Cheju island). Among these families, 4,613
heads of family agreed to meet specially trained surveyors and
answered specific items. Others refused to be visited. We also divided
these family incomes into 100 income classes because it is customary
not to use full sample data as it involves various complicated prob-
lems. See Basmann et. al, (19%0) for more details.

In the first column in Table 1, z represents the population index. If
z=0.2, it represents the 20th poorest percentile out of the 100, Similar-
Iy, if z= 0.9, it represents the 10th richest percentile out of the 100. The
second column is the actual empirical Lorenz curve, but in the next
two columns, the Lorenz curves are estimated using the ordinary least
squares (OLS) method and the orthonormal basis {ONB) method.

(2.10) L(2)=ayPy(z)+ 2,P(D)+a,P)(2)+ - + aP(z)+e
In the OLS method, the parameters are estimated by
2.12) a,=X'X)'XL(z)

In the ONB method, the parameters are estimated by

i T
8= £ P.@)Lz)

The difference in the parameter estimation methods produced little dif-
ference in the estimated values. Both OLS and ONB methods seems to
produce good approximation. However, some departure is observed at
the tail area, z=0.95 and z=1.

The Table 2, we report the result of the Lorenz curve derived by the
following approach.

_ 1 G
28) Ry 9= [l—i—glPo(z)+ 27 P+ 5 = P2

=3Gz2+ (1 - 3G)z

If we introduced sample Gini (0.4016) which is bigger than one third,
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Table 1

COMPARISON OF LORENZ CURVES BASED ON EMPIRICAL METHOD,
QLS METHOD, AND ONB METHOD

7 Lorenz? OLSLE ONBL?
0.05 0.0039 0.0054 0.0055
0.10 0.0138 0.0109 0.0121
0.15 0.0290 0.0243 0.0263
0.20 0.0484 0.0439 0.0464
0.25 0.0695 0.0683 0.0710
0.30 0.0942 0.0961 0.0990
0.35 0.1223 0.1267 0.1297
0.40 0.1542 0.1593 0.1625
0.45 0.1892 0.1939 0.1972
0.50 0.2281 0.2304 0.2339
0.55 0.2701 0.2692 0.2731
0.60 0.3135 0.311% 0.3154
0.65 0.3608 0.3569 0.3619
0.70 0.4135 0.4081 0.4138
0.75 0.4718 0.4662 0.4728
0.80 0.5378 0.5331 0.5408
0.85 0.6090 0.6111 0.6199
0.90 0.6921 0.7027 0.7127
0.95 0.7961 0.8107 0.8220
1.00 1.0000 0.9383 0.9508

Notes: 2 The population index is represented by z. If z=0.2, it represents the 20th
poorest percentile out of the 100.
b Lorenz means the empirical Lorenz curve. )
€ For the Lorenz curve 1.(z) = agPp(2) + 21P (2} + --- + asPy(z) +e, the parameters
are estimated by the OLS method.
d For the Lorenz curve L{z) = agPp(z} + a;P1{(2) + -+ a4P4(2) + ¢, the parameters

are estimated by the ONB method, &, ==L/~ Pa(z)L(z).

the Lorenz curve (2.8) will not be convex. Therefore, the only way to
make (2.8) a convex function is to introduce Gini=0.333. Since the
performance of R, is not very good, we increase flexibility. We extend
our series to the third order.

(0.5—/3
]PO(Z)-E-al @45 \/_ P,(z )+ 7\/7’) P,

29 R,@=[ 1
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Table 2

COMPARISON OF EMPIRICAL LORENZ CURVES WITH
THOSE DERIVED BY THE SECOND ORDER (R,
AND THIRD ORDER LEGENDRE SERIES

z Lorenz ONBL Ry* R;®

0.05 0.0039 0.0055 0.0025 0.0185
0.10 0.0138 0.0121 0.0100 0.0357
0.15 0.0290 0.0263 0.0225 0.0503
0.20 0.0484 0.0464 0.0400 0.0652
0.25 0.0695 0.0710 0.0625 0.0807
0.30 0.0942 0.0990 0.0900 0.0977
0.35 0.1223 0.1297 0.1225 0.1171
0.40 0.1542 0.1625 0.1600 0.1398
0.45 0.1892 0.1972 0.2025 0.1667
0.50 0.2281 0.2339 0.2500 0.1988
0.55 0.2701 0.2731 0.3025 0.2368
0.60 0.3135 0.3154 0.3600 0.2818
0.65 0.3608 0.3619 0.4225 0.3347
0.70 0.4135 0.4138 0.4900 0.3962
0.75 0.4718 0.4728 0.5625 0.4674
0.80 0.5373 0.5408 0.6400 0.5492
0.85 0.6090 0.6199 0.7225 0.6425
0.90 0.6921 0.7127 0.8100 0.7481
0.95 0.7961 0.8220 0.9025 0.8669
1.00 1.0000 0.9508 1.0000 1.0000

Notes: & The Lorenz curve R, is derived by using the following functinal form.

G_
2J5
To impose convexity, we need Gini coefficient be smaller than or equal to
0.333. Terefore, we introduced this value rather than observed value of 4.016.
b The Lorenz curve Rj is derived by the following functional form.

R3(@)= agPy(2) + a, P2+ a,P5(z) + a;P3(2)

@.8) Ry@)= (152 IR0 +5P @+ 5= Py

2.9 = [1;26-]P0(z) +a,P{z) +—2~%P2(z) + % Py(z)

This approach applies extra information of &, compared to the R, ap-
proach. We find that performance of R, is quite satisfactory because
extra information of 4, removes most of the uncertainty involved in
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the derivation of the Lorenz curve. We used OLS method to estimate
a, in (2.9).

In the following we compare the performance of three approaches,
ONB method, R, expansion, and R; expansion using the sum of the
squared residual criteria.

RSS(ONB) = g[ﬁ(z,) - Lons(z,)1?=0.0100
f=1]
T
RSS(R2) = 2[11:(z,) - Lg, (2)1*=0.3608
=
RSS(R3)= §flf_(z,) - L (z)1*=0.0849
t=

where £(z) is the empirical Lorenz curve, We se¢'R, is based only upon
one parameter dy(i.e., Gini), R, is based upon two parameters gli.e.,
Gini) and 4,, and the ONB is based upon 24(i.e., Gini), a;, a,, 3,. Asa
result, the sum of the squared residual decreased as we increase
knowledge of parameters.

VI. Conclusion

Our objective has been to establish a simple relationship between
the Gini coefficient and the underlying true Lorenz curve. When we ex-
panded the Lorenz curve in a Legendre series, its zeroth order integra-
tion corresponded to knowledge of the Gini coefficient. The higher
order integration explains the income redistribution process between
income groups. The zeroth order integration of the Lorenz curve is
equivalent to the normalization constraint so that the area under the
curve be constant. The first order component describes the mean of the
Lorenz curve so that skewness and fat tailedness of the J curve is
described by this component, related study can be found in Ryu and
Slottje (1992b). They derived the probability density function (i.e., the
share function), which can be defined as the normalized income densi-
ty function, with an exponential Legendre series. The higher order
coefficient corresponded to the redistribution of income between the

groups,

Though there exists a relationship between the Gini coefficient and
the underlying true Lorenz curve, such relationship will not hold when
we replace the truce Lorenz curve with an approximated function.
Furthermore, the estimated parameters will change when we increase
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the size of the polynomial series. However, by introducing an ortho-
hormal polynomial series in the Lorenz curve, the estimated para-
meters were stable with respect to the size of the series. Therefore the
Gini coefficient could be established as a function of the approximated
Lorenz curve by expanding the true unknown Lorenz curve in a Legen-
dre series. o

Appendix

Review of Mathematical Concepts of Completeness,
Orthonormality, and Basis

Let us review the concepts of completeness, orthonormality, and
basis. Let (X, B, ) be a measure space where X is a compact space,
the set B is a Borel-sigma algebra, and i is the Lebesgue measure,
Define L2(X) to be the set of all Borel measurable real valued functions
f whose squares are integrable on X, i.e., | x|f®)[2dx <oo, The set
L%(X) is a normed linear space with norm of {|f(x)|| = | xf(x))2dx]172,

bitrarily closely by elements belonging to this set. In other words,
LX) is separable.

An orthonormal sequence satisfies
§xP, (0P, (x)dx=5,,,, nm,=0, 1,2,..

where d,,, =1 if n=m and zero otherwise.

The orthogonal sequence {P,,} in the space L2(X) is called complete
if there is no element f=0 of LA(X) which is orthogonal to all the
clements P,. In other words, for a complete system of equalities

{xfOP (x)dx =0 (n=0,1,2,...)

and for f(x) €L2(X), it follows that f(x)= 0 for almost all xe X,

Suppose we have a countable set of elements in a sequence: g, g,,
E3s4ves &pye... We can then construct an orthonormal sequence by the
Gram-Schmidt procedure. From the given sequence we delete the func-
tion 0 (if it occurs) and all those functions which can be expressed as
linear combinations of the preceding ones. When proper normalization
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is performed, the resulting sequence {Py(x), Py(x0), P,(x),...} is ortho-

normal.

Py(x) = go(x)/ | 2!
n—1
Q,(x) =g, (X~ I_§0 P(x) |,g,x)P{x)dx, nz>1

P ()= Q,x)/|Q,M||

If the orthonormal sequence {Py(x), P,{x), P,(x),...} satisfies the com-
pleteness condition, it is called as an orthonormal basis.

We provide two examples of sequences and their corresponding ONBS.

1) Trigonométric expansion: Suppose we have a sequence {1,

COs X, $iN X,..., COS NX, sin nx,...} for x€f-, +7]. Since they
are orthogonal, normalization will produce a complete ONB:

1 cos X sin X cos 2x
P(X)= — , P.(X)=——, Py(x}= — Py(®)=——">
in 2x
p=2022
4 N
2) Legendre expansion: Suppose we have a sequence {1, %, %%...}
for xe [-1, +1}, then the Gram-Schmidt orthogonalization
will-produce a complete ONB:
P _ 1 _ 3 P — 5 3 2_1 —-
ﬁ(x)_ —\/_T' » Pl(x)"' '5' X 2(X)— '8—‘( X* - )’P3(X)_
1 (553 - 3%),...
\/s_ )
When we change the domain of x to [0,1], we gef the Legendre
polynomials stated in section 2.2.
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