Multicollinearity and NO-FLIRP

Thomas Johnson and T. D. Wallace*

. In a widely quoted reconsideration of the problem of multicol-
linearity, Farrar and Glauber (1967) came very close to enunciating the
principle of “no free Junch in regression” (N O-FLIRP).

Regarding solution of the multicollinearity problem, Farrar and
Glauber said:

“Economists are coming more and more to agree that the
second step, correction, requires the generation of additional in-
formation.” (p. 92)

“If 2 model is to be retained in all its complexity, solution
of the multicollinearity problem requires an augmentation of
existing data to include additional informaiton” (p- 95)

“New information must be obtained.” { p. 95)

However, some doubt about NO-FLIRP was cast by the authors
themselves as they recounted Kendall's (1957) procedure and then of-
fered some procedures of their own having to do with spotting and
then isolating ill-conditioning in the X'X matrix.

The purpose of this paper is to argue by example that, if the
notion of -more information is equivalent to additional knowledge in
the form of either more sample data or priors on 3, then NO-FLIRP
applies. Or, at the very least it is a valuable principle for synthesizing
proposals for solutions to multicollinearity,

Three examples are offered. The first is a well known characteri-
zation of collinearity in a two variable model. Example two is a dis-
cussion of a relatively new method for “conditioning” X’X matrices
called “ridge analysis.” And one final example is a brief reiteration of
the Kendall procedure. Each example is related to NO-FLIRP. An
application of ridge analysis is included in an appendix.

EXAMPLE ONE: Collinearity in 2 Two Variable Model
In a two regressor linear model with no constant term obeying
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the Gauss-Markov assumptions it can be shown that the. variance
and mean squared error of, say, by; :, the ols. estimator of the
coefficient of one first regressor, is

(1)
g2

MSE (2y1.2) =V (by. 2) = T
E-X,zz (1 - "%2)

=1

where 2 is regression variance, ;éixi is the sum of squares of
the first regressor, 7}, is the squared correlation of the first and
second regressors, and T is the sample size.

-Collinearity in this case is related to 712 and as the correlation

goes to one, the variance of the o.ls. estimator explodes,
This elementary result can be related to NO-FLIRP in two im-

mediate ways. First, for any fixed 7=l increasing the number of
observations (T) increases X}, thus eventually bringing the prob-

lem within any preseribed bound.! Hence, more information, in the
forms of new sample data, resolves any except perfect collinearity.

Second, additional information about A: in the form of an exact
or inexact prior can remove the collinearity problem. If, for exam-

ple, 8 = 0, the ols. estimator 4, has mean squared error

2
(2) MSE Gulipa=01=— " —
X3
=1
and any imprecision that remains can no longer be blamed on col-
linearity.
The two points made in this example can be generalized in rather

direct ways {Toro-Vizcarrondo and Wallace, 1968) to cases of more
than two independent variables.?

EXAMPLE TWO: Ridge Analysis

Consider the general linear model

{3) Y= Xp+e, e~(0, a2l

1 ie., ols estimators are consistent and asymptotically unbiased.
2 Incorporation of inexact priors in the classical framework is discussed by Theil
{1963) and Theil and Goldberger {1960).
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- where the sample size is T, the parameter space is nominally of order
m T, and the usual definitions apply to Y, X, 3 and ¢ Multicol-
linearity has to do with an “ill-conditioned” X'X matrix and the ili-
conditioning can be related to its characteristic roots,

For example, Hoerl and Kennard (1970} show that the average
squared distance (sum of mean squared errors) of the ols. estima-
tor from 8 has the following expectation.

(4) EG—B) (b—f) =o%r (X'X)1eg? 3 _11—) > -;Z_

i=1

where 4, i=1 .... m are the characteristic roots of XX ordered

from largest to smallest. Thus, as X'X approaches singularity, the
o.Ls. estimators get worse in MSE,

As a conditioning device, Hoerl and Kennard (1970) propose the
estimator

- (5) F=(X'X+KI)' X'y

where the scalar K may be chosen by considerations of the. sample
data.?

Hoerl and Kennard ( 1870) recognize that their estimator can be
recast in a Bayesian framework of augmenting the sample data with
priors on 8 and sz However, one can use the Theil-Goldberger
(1960, 1963) approach to recast ridge analysis into combining sample
data with in exact restriction on # in the classical least squares frame-
work, _

E.g, consider the model in (3} above augmented by the prior

-(6) 0=L5+U where U~ (0,72)

Combining (3) with (6) and applying the Aitken formula, the
-o.ls. estimate for g is

(1) B=frrxe g [ 'xr.

- So the X in ridge analysis ean be interpreted as the ratio of the
value of the prior information to the value of the sample data, where
the prior information is that §is zero apart from a random component.

3 In[2] Hoerl and Kemnard {1970} choose to display the payoff function (SSE) and allB;s
as functions of K where K is varied from zero to one, with XX normalized to the correla-
tion matrix, In the practical problems considered, impressive stabiilty of the “ridge” estima-
tors is achieved with only small increase in SSE.
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Having K non-zero implies prior information on the variability of the
elements of 8 either side of zero*

EXAMPLE THREE: Deletion of Principal Components

The third example is the practice of deletion of principal com-
ponents.

If the rank of X in equation three is m, there are m principal com-
ponents which may be written -

(8) V= XG
Where G is mxm and its columns are characteristic vectors of X and
the vectors of V are the orthogonal principal components of X°. The
matrix V has the same informational content as X in the sense that a
regression of Y on V is a full rank reparametrized regression of Y on
X. Thus, if 7 is the mxl vector of parameters relating V to Y,

(9) A=Gr and
(10) 2=Gc

where ¢ and b are ols. estimators of 7 and 3 respectively {Massy
1965). '

Some authors have suggested deletion of principal components
as a solution for multicollinearity (Haitovsky 1968, Kendall 1957,
Massy 1965), the heuristic motivation being that each characteristic
root of XX shows the variance of each principal component, the or-
dering of the roots from largest to smallest corresponding to the
numbering of the principal components from first to last. Since the
principal components are orthogonal, total variation in the full set
is the sum of the characteristic roots of XX, Hence, small characteris-
tic roots indicate a correspondingly small contribution to total varia-
tion. The point to be made here is that deletion or other linear restric-
tions on principal components can be written as

(11)  m7r=h

and can be recast in the form of exact priors on the original parameter

4 Civen the impressive empirical results in Hoerl and Kennard (1870), priors of this
type appear to be more attractive tham exact zerc restriction, ie., outright deletion of
some variables. However, if one were to tailor the ridge anmalysis approach to historical

practices in economics, one might choose to condition X by K %) , and thus consider
the estimator E: [X’X+K(g°1 ] -1 x'Y where the implicit inexact restrictions apply
to the subset of B's which are of least interest or are under most prior “suspicion” in a

particular problem.
5 See Malinvaud (1970} on the algebra of principal components.
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space. Since G is orthogonal, the restrictions in (11) are equivalent to

(12)  mep=hns

One can construct examples to show that deletion of principal
components associated with least characteristic roots of X'X may
furnish implicit restrictions on 8that are worse than restrictions as-
sociated with deletion of components associated with larger roots.”
Basically, the central fault in the usual practice of the principal com-
ponent procedure is thaf variability of the dependent variable enters
in no way into the criteria for the evaluation of the implied priors.
Conversely, through the sample estimates of 8, the ridge analysis
method assimilates this information, Thus, there are ¢ priori grounds
for arguing that ad hoc priors on A via ridge analysis hold more pro-
mise than indirect priors based on deleting principal components,
Myoken and Uchida (1975) have proven that the ridge estimator has,
in general, smaller mean square error than the principal component
estimator,

Summary

With three examples we argue for the principle of “no free lunch
in regression” (NO-FLIRP) We can solve the problem of multi-
collinearity only if we pay the price to obtain more information. For
any except perfect collinearity a solution may be purchased for the
price of more observations on the given set of variables. For perfect
multicollinearity, [X'X| = 0, we must provide more information about

6 It may be worth noting that, if X is of rank p<<m, an estimable reparametrization
of the less than full rank model may be made via regressioh of Y on the p principal com-
ponents of X, In this case, the G matrix of equation (8) above is mxp and the relation
Gy=p§ furnishes the reparametrization, Partitioning G and B conformably, the repara-

metrization istG;lﬁlz,BgDeleting principal components then imposes an additional set
of restrictions onfi. The two step procedure of reduction to principal components and then

restricting the principal component regression by H'y=4%.is equivalent to imposing the

restrictions [%%é?%_} B= [i}

k

7 Tske the example of a two variable standardized regression with ra=0.1,
re2=0.98 and 7=33, where ry: s the correlation of the first regressor with the

dependent varighble, ete, Dropping the principal component associated with the smallest

: r . - : : :
characteristic root of ( r; If)yt_elds a restriction on that can be rejected as improving

MSE according to the Toro-Wallace test {1968}. The implicit restriction on B via dropping
the Srst principal component is a “good” move according to the same testing procedire.
For an application of ridge analysis to those data, see the Appendix.
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the parameters to obtain a solution. The technique of “ridge analysis”
may be used to obtain information about potential restrictions on the
parameters at a relatively modest price in the form of an increase in
bias of the estimates. Conversely, the procedure of deleting principal
components is likely to be a poor bargain and should be avoided.
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APPENDIX: Ridge Analysis
APPLIED TO THE DATA IN NOTE SEVEN

The Appendix Table shows what happens when ridge analysis
is applied to the data in note 7 of the text with K incremented by
tenths from zero to one.

Appendix Table: Ridge Estimates for
Two Variable Model with ry=0.1, ry3=0.2, rp=0.98

K bi(K) by (K) $SE
0 —2.42 2.56 73
1 — 34 49 .90
2 — .16 .30 93
3 — 09 .22 .88
4 — 06 .18 .95
5 - .04 .16 R
8 — .02 14 97
N - 0 13 .98
8 - 01 1 48
9 -~ 002 A1 .98

1.0 .001 10 .98

From the Appendix Table, one can see that for K between .6 and

1.0, the SSE stabilizes and estimates for £y, g, stabilize at about
zero and .10 respectively. Deleting the first principal component

yielded estimators of 1, 82 of —2.5 and 2.5 while dropping the sec-

ond component gave estimates of .08, .08,






